Science and earth science

Studia Quaternaria


Studia Quaternaria | 2021 | vol. 38 | No 2 |

Download PDF Download RIS Download Bibtex


Results of the analysis proved that the net primary productivity has a strong connection with the solar insolation. The length of daylight and the level of solar radiation are the driving forces behind changes in growth of primary products, as floral forms are among the first indicators of changes in ecosystems due to global warming. The group of climatic components that have a moderate connection with the bioproductivity of ecosystems of the Polissya are derivatives of bioclimatic indicators related to air temperature, including annual temperature, seasonality, minimum temperature of the coldest month, and the average temperature of the coldest quarter. Seasonality and the annual variation of temperature affect bioproductive processes inversely: the productivity decreases with the increased temperature range between the warmest and the coldest periods of the year and in the middle of quarters.
Go to article


Analytical information on the state of water resources of the state and features of agricultural production in the conditions of climate change, 2020., downloaded on May 8, 2020 (in Ukrainian).

Botkin, D.B., Simpson, L.G., 1990. Biomass of the North American Boreal Forest. Biogeochemistry 9 (2), 161–174.

Climate change, 2007. The Scientific Basis – Contribution of Working Group 1 to the IPCC Fourth Assessment Report, UNEP/WMO, 250 pp., downloaded on June 6, 2020.

Earth Observing System Data and Information System (EOSDIS)., downloaded on February 13, 2020.

Ivanyuta, S.P., Kolomiets, O.O, Malinovskaya, O.A, Yakushenko, L.M., 2020. Climate change: consequences and adaptation measures: analytical report, Kyiv, 110 pp. (in Ukrainian).

Lakida, P.I., 1996. Produktyvnist lisovykh nasadzhen Ukrainy za komponentamy nadzemnoi fitomasy. Doctoral Dissertation for Agricultural Sciences (06.03.02, Forest Management and Forest Taxation). Kyiv, 304 pp. (іn Ukrainian).

Lukash, O.V., 2009. The flora of the Eastern Polissia vascular plants: the structure and dynamics Phytosociocentre, Кyiv, 200 pp. (in Ukrainian).

Madgwick, H.A.I., 1970. Biomass and productivity models of forest canopies. Ekological studies: Analysis and synthesis, 4, 47–54; Heidelberg, Berlin: Springer Verlag. Y. 1: Analysis of temperate forest ecosystems.

Mysiak, R.I., 2011. Activity of photosynthetic pigments of bushes is at the terms of different insolation. Scientific Bulletin of NLTU of Ukraine 21, 3–5. (in Ukrainian).

Public cadastral map of the Ukraine.,6177585.367221659&z=6.5&l=kadastr&bl=ortho10k_all

QGIS Free open sourse geographic information system.

Running, S.W., Nemani, R., Glassy, J.M., Thornton, P.E., 1999. MODIS daily photosynthesis (PSN) and annual net primary production (NPP) product (mod17). Algorithm Theoretical Basis Document, 1999., downloaded on June 20, 2020.

Solar radiation and photovoltaic electricity potential country and regional maps for Europe // European Commission., downloaded on April 16, 2020.

WorldClim – Global Climate Data, 2015., downloaded on April 19, 2020.
Go to article

Authors and Affiliations

Svitlana Kyriienko
Alina Mykolaivna Sliuta

  1. T.H. Shevchenko National University “Chernihiv Colehium” Hetman Polubotok Str. 53, 14013 Chernihiv, Ukraine
Download PDF Download RIS Download Bibtex


The article summarises results of studies on litter concentrations on the Polish sea shore. Origin, mechanism of transport and source of litter are discussed. The main part of the data has been based on litter quality and quantity investigation in post-storm marine sediments. Data were collected in surface sediments since 2001 and in fossil washover fans dated 1988–2000 in different locations on the coast. Litter has been divided according to the material, use, size and origin. Analysis of litter quantity on beaches after storm surges showed an annual increase. The heavier surge, the more debris and mixed litter appear on the coast. A large increase in the amount of litter has been observed after the storm in 2009. The average amount of litter per 1 m2 has increased from 1.5 in 2001 to 17.5 in 2020. Among litter there is still a similar share of fishery and ship waste. The biggest growth was observed in waste of consumable origin. Plastic litter, including anthropogenic waste left on beaches, has increased to 80% in recent years. Most waste occurred on the coast adjacent to the Vistula River mouth.
Go to article


Alkalay, R., Pasternak, G., Zask, A., 2007. Clean-coast index – a new approach for beach cleanliness assessment. Ocean & Coastal Management 50, 352–362.

Anfuso, G., Lynch, K., Williams, A.T., Perales, J.A., Pereira da Silva, C., Nogueira Mendes, R., Maanan, M., Pretti, C., Pranzini, E., Winter, C., Verdejo, E., Ferreira, M., Veiga, J., 2015. Comments on marine litter in oceans, seas and beaches: characteristics and impacts. Annals of Marine Biology Research 2(1), 1008.

Arcangeli, A., Campana, I., Angeletti, D., Atzori, F., Azzolin, M., Carosso1, L., Di Miccolil, V., Giacoletti, A., Gregorietti, M., Luperini, C., Paraboschi, M., Pellegrino, G., Ramazio, M., Sarà, G., Crosti, R., 2017. Amount, composition, and spatial distribution of floating macro litter along fixed trans-border transects in the Mediterranean basin. Marine Pollution Bulletin 129, 545–554.

Aydın, C., Güven, O., Salihoğlu, B., Kıdeyş, A.E., 2016. The Influence of land use on coastal litter: An approach to identify abundance and sources in the coastal area of Cilician Basin, Turkey, Turkish Journal of Fisheries and Aquatic Sciences 16, 29–39.

Balčiūnas, A., Blažauskas, N., 2014. Scale, origin and spatial distribution of marine litter pollution in the Lithuanian coastal zone of the Baltic Sea. Baltica 27, 39–44

Bergmann, M., Gutow, L., Klages, M. (Eds), 2015. Marine anthropogenic litter. Springer International Publishing, Switzerland. 447 pp.

Browne, M.A., Galloway, T.S., Thompson, R.C., 2010. Spatial patterns of plastic debris along estuarine shorelines. Environmental Science & Technology 44, 3404–3409.

EA/NALG, 2000. Assessment of aesthetic quality of coastal and bathing beaches. Monitoring protocol and classification scheme. Environment Agency and The National Aquatic Litter Group, London.

Cheshire, A.C., Adler, E., Barbičre, J., Cohen, Y., Evans, S., Jarayabhand, S., Jeftic, L., Jung, R.T., Kinsey, S., Kusui, E.T., Lavine, I., Manyara, P., Oosterbaan, L., Pereira, M.A., Sheavly, S., Tkalin, A., Varadarajan, S.,Wenneker, B., Westphalen, G., 2009. UNEP/ IOC Guidelines on Survey and Monitoring of Marine Litter. UNEP Regional Seas Reports and Studies, No. 186, IOC Technical Serious No. 83.

Corcoran, P.L., Biesinger, M.C., Grifi, M., 2009. Plastics and beaches: A degrading relationship. Marine Pollution Bulletin 58 (1), 80–85.

Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin 44, 842–852.

Fernandino, G., Elliff, C.I., Silva, I.R., de Souza Brito, T., da Silva Pinto Bittencourt, A.C., 2016. Plastic fragments as a major component of marine litter: a case study in Salvador, Bahia, Brazil, Revista de Gestão Costeira Integrada. Journal of Integrated Coastal Zone Management 16(3), 281–287.

Gabrielides, G.P., Golik, A., Loizides, L., Marino, M.G., Bingel, F., Torregrossa, M.V., 1991. Man-made garbage pollution on the Mediterranean coastline. Marine Pollution Bulletin 23, 437–441.

Galgani, F., Hanke, G., Werner, S., De Vrees, L., 2013. Marine litter within the European marine strategy framework directive. ICES. Journal of Marine Science 70 (6), 1055–1064.

HELCOM, 2009. Marine Litter in the Baltic Sea Region: Assessment and priorities for response. Helsinki, Finland, 1–20.

HELCOM, 2014. Marine Litter in the Baltic Sea: sources, monitoring approaches, possible common indicators and first lines of thinking on measures. Monitoring and Assessment Group (MONAS) Oslo, Norway, 1–51.

Hasler, M., Schernewski, G., Balciunas, A., Sabaliauskaite, V., 2018. Monitoring methods for large micro- and meso-litter and applications at Baltic beaches. Journal of Coastal Conservation 22, 27–50.

Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L., 2015. Plastic waste inputs from land into the ocean. Science 347 (6223), 768–771.

Jóźwiak, T., 2010. Parametryzacja stanu sozologicznego wybrzeża południowego Bałtyku w świetle idei rozwoju zrównoważonego. Wydawnictwo Uniwersytetu Gdańskiego, 248 (in Polish)

Laglbauer, B.J.L., Franco-Santos, R.M., Andreu-Cazenave, M., Brunelli, L., Papadatou, M., Palatinus, A., Grego, M., Deprez, T., 2014. Macrodebris and microplastics from beaches in Slovenia. Marine Pollution Bulletin 89, 356–366.

Łabuz, T.A., 2002. Eamples of anthropopresion on the coastal dunes of Swina Gate Sandbar. In: Szwarczewski, P., Smolska, E. (Eds), Zapis działalności człowieka w środowisku przyrodniczym, 77–84, UW, Warszawa, (in Polish with English summary).

Łabuz, T.A., Olechnowicz, P., 2004. Reconstruction of the accumulative dune coast relief on the basis of sedimentological structures – case study from the Świna Gate Sandbar. In: Błaszkiewicz, M., Gierszewski, P. (Eds), Rekonstrukcja i prognoza zmian środowiska przyrodniczego w badaniach geograficznych, 237–248, Prace Geograficzne 200, IGiPZ PAN, Warszawa (in Polish with English summary).

Łabuz, T.A., 2007. A record of contemporary anthropogenic pollutants in sediments and surface relief of the Świna Gate Sandbar. In: Smolska, E., Szwarczewski, P. (Eds), Zapis działalności człowieka w środowisku przyrodniczym, 89–98, Wydawnictwo Szkoły Wyższej Przymierza Rodzin, Warszawa (in Polish with English summary).

Łabuz, T.A., 2009. Distal washover fans on Świna Gate Sandbar. Oceanological and Hydrobiological Studies 38 (Supplement 1), 79–95.

Łabuz, T.A., 2015. Coastal dunes: Changes of their perception and environmental management. In: Finkl, Ch.W., Makowski, Ch. (Eds), Environmental management and governance. Advances in coastal and marine resources series, 323–410, Coastal Research Library 8, Springer.

Łabuz, T.A., 2018. Erosion of sandbar dunes of Koszalin Bay resulting from extreme storm events Barbara and Axel from the turn of 2016 and 2017. Przegląd Geograficzny 90 (3), 435–477, (in Polish with English summary).

MARLIN, 2013. Final report of the Baltic marine litter project MARLIN. Litter Monitoring and raising awareness 2011‐2013,

Moore, C.J., Lattin, G.L., Zellers, A.F., 2011. Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California. Jorunal of Integrated Coastal Zone Management 11 (1), 65–73.

Munari, C., Corbau, C., Simeoni, U., Mistri, M., 2016. Marine litter on Mediterranean shores: analysis of composition, spatial distribution and sources in north-western Adriatic beaches. Waste Management 49, 483–490.

Oigan-Pszczol, S.S., Creed, J.C., 2007. Quantification and classification of marine litter on beaches along Armacao dos Buzios, Rio de Janeiro, Brazil. Journal of Coastal Research 23 (2), 421–428.

OSPAR, 2010. Guideline for Monitoring Marine litter on the Beaches in OSPAR Maritime area. OSPAR Commission, 1–84.

Portman, M.E., Brennan, E., 2017. Marine litter from beach-based sources: Case study of an Eastern Mediterranean coastal town. Waste Management 69, 535–544.

Pruter, AT., 1987. Sources, quantities and distribution of persistent plastics in the marine environment. Review. Marine Pollution Bulletin 18 (6), Suppl. l8, 305–310.

Ryan, P.G., 2015. A brief history of marine litter research. In: Bergmann, M., Gutow, L., Klages, M. (Eds), Marine anthropogenic litter, 1–25, Springer International Publishing, Switzerland.

Rosevelt, C., Los Huertos, M.W., Garza, C., Nevins, H., 2013. Marine debris in central California: Quantifying type and abundance of beach litter in Monterey Bay, CA. Marine Pollution Bulletin 71 (1–2), 299–306.

Silva-Iñiguez, L., Fisher, D.W., 2003. Quantification and classification of marine litter on the municipal beaches of Ensenada, Baja California. Marine Pollution Bulletin 46 (1), 132–138.

Sheavly, S.B., Register, K.M., 2007. Marine debris and plastics: environmental concerns, sources, impacts and solutions. Journal of Polymers and the Environment 15, 301–305.

Strand, J., Tairova, Z., Metcalfe, R. d’A., 2016. Status on beach litter monitoring in Denmark 2015. Amounts and composition of marine litter on Danish reference beaches. DCE – Danish Centre for Environment and Energy, 42 pp. Scientific Report from DCE – Danish Centre for Environment and Energy 177. Aarhus University, p 42.

Taffs, K.H., Cullen, M.C., 2005. The distribution and abundance of beach debris on isolated beaches of northern New South Wales, Australia. Australian Journal of Environmental Managing 12, 244–250.

Thiel, M., Hinojosa, L.A., Miranda, L., Pantoja, J.F., Rivadeneira, M.M., Vasquez, N., 2013. Anthropogenic marine debris in the coastal environment: a multi-year comparison between coastal waters and local shores. Marine Pollution Bulletin 71, 307–316.

Tudor, D.T., Williams, A.T., Philips, M.R., Thomas, M C., 2002. Qualitative and quantitative comparisons of some indices suitable for litter analysis. In: The changing coast. Littoral 2002.

EUROCOAST/ EUCC, Porto, Portugal, 367–373.

Urban-Malinga, B., Zalewski, M., Jakubowska, A., Wodzinowski, T., Malinga, M., Pałys, B., Dąbrowska, A., 2020. Microplastics on sandy beaches of the southern Baltic Sea. Marine Pollution Bulletin 155, 111170.

Williams, A., Pond, K., Ergin, A., Cullis, M.J., 2013. The hazards of beach litter. In: Finkl, Ch.W. (Ed.), Coastal Hazards. Springer, Dordrecht, 753–780.

Watts, A.J.R., Porter, A., Hembrow, N., Sharpe, J., Galloway, T.S., Lewis, C., 2017. Through the sands of time: beach litter trends from nine cleaned North Cornish beaches. Environmental Pollution 228, 416–424.

Vanninen, P., Östin, A., Bełdowski, J., Pedersen, E.A., Söderström, M., Szubska, M., Grabowski, M., Siedlewicz, G., Czub, M., Popiel, S., Nawała, J., Dziedzic, D., Jakacki, J., Pączek, B., 2020. Exposure status of sea-dumped chemical warfare agents in the Baltic Sea. Marine Environmental Research 161, 105112, p. 10.

Zalewska, T., Maciak, J., Grajewska A., 2021. Spatial and seasonal variability of beach litter along the southern coast of the Baltic Sea in 2015–2019 – Recommendations for the environmental status assessment and measures. Science of the Total Environment 774, 145716, doi: 10.1016/j.scitotenv.2021.145716.

Zhou, Ch., Liu, X., Wang, Z., Yag, T., Shi, L., Wang, L., You, S., Li M., Zhang, C., 2016. Assessment of marine debris in beaches or seawaters around the China Seas and coastal provinces. Waste Management 48, 652–660.
Go to article

Authors and Affiliations

Tomasz Arkadiusz Łabuz

  1. Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza St. 16, PL-70383 Szczecin, Poland
Download PDF Download RIS Download Bibtex


The soil microbiome is exposed to technogenic influence during the operation of metal structures. There are quantitative and qualitative changes in the microbiota of the technogenic ecosystem. During the study of the technogenic soil ecosystem (ferrosphere), samples of which were taken in the field (Chernihiv, Ukraine: 51°29’58”N, 31°16’09”E), the presence of corrosively active microbial cenosis was established: sulfate-reducing, denitrifying, iron-reducing (using acetate as the only electron donor, and Fe (III) as the only electron acceptor) and ammonifying bacteria. The predominant representatives of corrosively active groups of bacteria were isolated. They were identified as Bacillus simplex, Streptomyces gardneri, Streptomyces canus (ammonifying bacteria), Fictibacillus sp. (ammonifying bacteria with iron-reducing ability), Anaerotignum (Clostridium) propionicum (organic acid-producing bacteria), Desulfovibrio oryzae (sulfate-reducing bacteria) based on some microbiological, physiological and biochemical, genetic features. Strains of heterotrophic and hemolitotrophic bacteria (individual representatives and their associations) isolated from the technogenic ecosystem can be used in both industrial and technological spheres. The interaction of isolated bacteria in the process of microbial induced corrosion is a prospect for further research.
Go to article


Abdulina, D.R., Asaulenko, L.G., Purish, L.M., 2011. Dissemination of corrosive aggressive bacteria in soils of different biotopes (Rozpovsiudzhennia koroziino-ahresyvnykh bakterii u gruntakh riznykh biotopiv). Studia Biologica 5 (1), 11–16. (in Ukrainian).

Agrawal, A., Vanbroekhoven, K., Lal, B., 2010. Diversity of culturable sulfidogenic bacteria in two oil-water separation tanks in the north-eastern oil fields of India. Anaerobe 16 (1), 12–18.

Ait-Langomazino, N., Sellier, R., Jonquet, G., Trescinski, M., 1991. Microbial degradation of bitumen. Experientia 6, 533–539.

AlAbbas, F.M., Williamson, Ch., Bhola, Sh.M., Spear, J.R., Olson, D.L., Mishra, B., Kakpovbia, A.E., 2013. Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated from an Oil Field. Journal of Materials Engineering and Performance 22 (11), 3517–3529.

Amann, R.J., Stromley, J., Devereux, R., Key, R., Stahl, D.A., 1992. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Applied and Environmental Microbiology 58, 614–623.

Andreyuk, E.I., Kozlova, I.A., Kopteva, Zh.P., Pilyashenko-Novokhatny, A.I., Zanina, V.V., Purish, L.M., 2002. Ferrosphere – formation zone corrosive community of microorganisms (Ferrosfera – zona formirovaniya korrozionno-aktivnogo soobschestva mikroorganizmov). Reports of the NAS of Ukraine 3, 157–161. (in Russian)

Andreyuk, K., Kozlova, I., Koptieva, Zh., Pilyashenko-Novokhatny, A., Zanina, V., Purish, L., 2005. Microbial Corrosion of Underground Structures, Naukova Dumka, Kyiv. (in Ukrainian with English summary).

Antonovskaya, N.S., Kozlova, I.A., Andreyuk, E.I., 1986. Thiobacillus thioparus – active agent in steel corrosion. Mikrobiologii Zhurnal 1, 36–41. (in Russian with English summary)

Aseeva, I.V., Babieva, I.P., Byzov, B.A., Goosev, V.S., Dobrovolskaya, T.G., Zvyagintsev, D.G., Zenova, G.M., Kozhevin, P.A., Kurakov, A.V., Lysak, L.V., Marfenina, O.E., Mirchink, T.G., Polyanskaya, L.M., Panikov, N.S., Skvortsova, I.N., Stepanov, A.L., Umarov, M.M., 1991. Methods of soil microbiology and biochemistry (Metodyi pochvennoy mikrobiologii i biohimii). In: Zvyagintsev, D.G. (Ed.), Moscow University Press, Moscow. (in Russian).

Bala, D.D., Chidambaram, D., 2014. Effect of anaerobic microbial corrosion on the surface film formed on steel. ECS Transactions 58 (41), 137–149.

Bano, A.Sh., Qazі, J.I., 2011. Soil Buried Mild Steel Corrosion by Bacillus cereus-SNB4 and its Inhibition by Bacillus thuringiensis- SN8. Pakistan Journal of Zoology 43 (3), 555–562.

Bergey’s Manual of Systematic Bacteriology, 2005. Second Edition, Volume 2, The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria.Brenner, D.J., Krieg, N.R., Staley, J.T. et al., Springer, New York.

Bergey’s Manual of Systematic Bacteriology, 2009. Second edition, Volume 3, The Firmicutes. De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.-H., Whitman, W.B. Springer, New York.

Bergey’s Manual of Systematic Bacteriology, 2012. Second edition, Volume 5, The Actinobacteria, Part A. Goodfellow, M., Kämpfer, P., Busse, H.-J., Trujillo, M.E., Suzuki, K.-I., Ludwig, W., Whitman, W.B. Springer, New York.

Beech, I.B., Gaylarde, Ch.C., 1999. Recent advances in the study of biocorrosion: an overview. Revista de Microbiologia 30 (3), 117– 190.

Bermont-Bouis, D., Janvier, M., Grimont, P.A., Dupont, I., Vallaeys, T., 2007. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel. Journal of Applied Microbiology 102, 161–168.

Bleich, R., Watrous, J.D., Dorrestein, P.C., Bowers, A.A., Shank, E.A., 2015. Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis. Proceedings of the National Academy of Sciences (PNAS) 112 (10), 3086–3091.

Bolton, N., Critchley, M., Fabien, R., Cromar, N., Fallowfield, H., 2010. Microbially influenced corrosion of galvanized steel pipes in aerobic water systems. Journal of Applied Microbiology 109, 239–247.

Bragadeeswaran,S., Jeevapriya, R., Prabhu, K., Sophia Rani, S., Priyadharsini, S., Balasubramanian, T., 2011. Exopolysaccharide production by Bacillus cereus GU812900, a fouling marine bacterium. African Journal of Microbiology Research 5 (24), 4124–4132.

Capão, A., Moreira-Filho, P., Garcia, M., Bitati, S., Luciano Procópio, L., 2020. Marine bacterial community analysis on 316L stainless steel coupons by Illumina MiSeq sequencing. Biotechnology Letters 42, 1431–1448.

Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., Lappin- Scott, H.M. Microbial Biofilms, 1995. Annual Review of Microbiology 49, 711–745.

Du, J., Li, S., Liu, J., Yu, M., 2014. Corrosion behavior of steel Q235 co-influenced by Thiobacillus thiooxidans and Bacillus. Beijing Hangkong Hangtian Daxue Xuebao. Journal of Beijing University of Aeronautics and Astronautics 40 (1), 31–38.

Duque, Z., Ibars, J.R., Sarró, M.I., Moreno, D.A., 2011. Comparison of sulphide corrosivity of sulphate- and non-sulphate-reducing prokaryotes isolated from oilfield injection water. Materials and Corrosion 62 (9999), 1–7.

Engel, K., Ford, S.E., Coyotzi, S., McKelvie, J., Diomidis, N., Slater, G., Neufeld, J.D., 2019. Stability of Microbial Community Profiles Profiles Associated with Compacted Bentonite from the Grimsel Underground Research Laboratory. mSphere 4 (6) e00601-19.

Giovannoni, S.J., Britschgi, T.B., Moyer, C.L., Field, K.G., 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature, 345, 60–63.

Herro, H.M., Port, R.D., 1993. The Nalco guide to cooling water system failure analysis, 1st ed., McGraw-Hill, New York, pp. 420.

Horn, J., Carrrillo, C., Dias, V., 2003. Comparison of the Microbial Community Composition at Yucca Mountain and Laboratory Test Nuclear Repository Environments. CORROSION ⁄2003 (San Diego, CA, March 16–20, 2003), Paper No. 03556. NACE International, Houston.

Ilhan-Sungur, Е., Ozuolmez, D., Çotuk, A., Cansever, N., Muyzer, G., 2017. Isolation of a sulfide-producing bacterial consortium from coolingtower water: Evaluation of corrosive effects on galvanized steel. Anaerobe 43, 27–34.

James, G.A., Beaudette, L., Costerton, J.W., 1995. Interspecies bacterial interactions in biofilm. The Journal of Industrial Microbiology and Biotechnology 15 (4), 237–262.

Jan-Roblero, J., Romero, J.M., Amaya, M., Le Borgne, S., 2004. Phylogenetic characterization of a corrosive consortium isolated from a sour gas pipeline. Applied Microbiology and Biotechnology 64, 862–867.

Jayaraman, A., Earthman, J.C., Wood, T.K., 1997. Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Applied Microbiology and Biotechnology 47, 62–68.

Lane, D.G., 1991. Nucleic acids techniques in bacterial systematic. In: Stackebrandt, E., Goodfellow, M. (Eds), Nucleic Acid Techniques in Bacterial Systematic, John Wiley and Sons, New York, 115–175.

Lewandowski, Z., 2000. Structure and Function of Biofilms. In: Evans, L.V. (Ed.) Biofilms: Recent Advances in Their Study and Control, 1–17, Harwood Academic Publishers.

Li, X., Duan, J., Xiao, H., Li, Y., Liu, H., Guan, F., Zhai, X., 2017. Analysis of Bacterial Community Composition of Corroded Steel Immersed in Sanya and Xiamen Seawaters in China via Method of Illumina MiSeq Sequencing. Frontiers in microbiology 8, 1737.

Lopez, M.A., Serna, F.J.Z., Jan-Roblero, J., Romero, J.M., Hernandez- Rodriguez, C., 2006. Phylogenetic analysis of a biofilm bacterial population in a water pipeline in the Gulf of Mexico. FEMS Microbiology Ecology 58, 145–154.

Lovley, D.R., Phillips, E.J.P., 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganes, Applied and Environmental Microbiology 54 (6), 1472–1480.

Magot, M., Ravot, G., Campaignolle, X., Ollivier, B., Patel, B.K., Fardeau, M.L., Thomas, P., Crolet, J.L., Garcia, J.L., 1997. Dethiosulfovibrio peptidovorans gen. Nov., sp. Nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. International Journal of Systematic and Evolutionary Microbiology 47, 818–824.

Methods of general bacteriology: in three volumes (Metodyi obschey mikrobiologii), 1984. Gerhardt, F. et al. (Ed.), 3, Mir, Moscow. (in Russian).

Monroy, O.A.R., Gayosso, M.J.H., Ordaz, N.R., Olivares, G.Z., Ramírez, C.J., 2011. Corrosion of API XL 52 steel in presence of Clostridium celerecrescens. Materials and Corrosion 62 (9), 878–883.

Neria-Gonzalez, I., Wang, E.T., Ramirez, F., Romero, J.M., Hernandez- Rodriguez, C., 2006. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe 12, 122–133.

Nnabuk Eddy Okon, 2010. Fermentation product of Streptomyces griseus (albomycin) as a green inhibitor for the corrosion of zinc in H2SO4. Green Chemistry: Letters and Reviews 3 (4), 307–314.

Nuňez, M., 2007. Prevention of metal corrosion: new research. Nova Science Publishers, Inc., New York, pp. 310.

Okabe ,S., Odagiri, M., Ito, T., Satoh, H., 2007. Succession of sulfur- oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Applied and Environmental Microbiology 73, 971–980.

Oliveira, V.M., Lopes-Oliveira, P.F., Passarini, M.R.Z., Menezes, C.B.A., Oliveira, W.R.C., Rocha, A.J., Sette, L.D., 2011. Molecular analysis of microbial diversity in corrosion samples from energy transmission towers. Biofouling 27 (4), 435–447.

Pacheco da Rosa, J., Korenblum, E., Franco-Cirigliano, M.N., Abreu, F., Lins, U., Soares, R.M.A., Macrae, A., Seldin, L., Coelho, R.R.R., 2013. Streptomyces lunalinharesii Strain 235 Shows the Potential to Inhibit Bacteria Involved in Biocorrosion Processes. Hindawi Publishing Corporation BioMed Research International, Article ID 309769.

Pacheco da Rosa, J., Tiburcio, S.R.G., Marques, J.M., Seldin, L., Coelho, R.R.R., 2016. Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm. Brazilian journal of microbiology 47, 603–609.

Pavissich, J.P., Vargas, I.T., Gonzalez, B., Pasten, P.A., Pizarro, G.E., 2010. Culture dependent and independent analyses of bacterial communities involved in copper plumbing corrosion. Journal of Applied Microbiology 109, 771–782.

Pope, D.H., Duquette, D.J., Johannes, A.H., Wayner, P.C., 1984. Microbially influenced corrosion of industrial alloys. Materials Performance 23 (4), 14–15.

Pilyashenko-Novokhatny, A.I., 2000. Possible distribution of functions between the components of corrosion-hazardous aggregates of microorganisms in the general process of microbially induced corrosion (Mozhlyvyi rozpodil funktsii mizh skladovymy koroziinonebezpechnymy sukupnostiamy mikroorhanizmiv v zahalnomu protsesi mikrobno indukovanoi koroziii). Materials IV International. Conference-exhibitions “Problems of corrosion and anticorrosion. Protection of materials” (Corrosion-200). G.V. Karpenko Physical-Mechanical Institute of the National Academy of Sciences of Ukraine, Lviv. 564–567. (in Ukrainian)

Plohinskij, N.A., 1970. Biometrics (Biometriya). Izdatel’stvo Moskovskogo universiteta, Moskva. (in Russian)

Purish, L.M., Asaulenko, L.G., 2007. Dynamics of succession changes in sulfidogenic microbial association under conditions of biofilm formation on the surface of steel. Mikrobiologii Zhurnal 69 (6), 19‑25. (in Ukrainian with English summary)

Purish, L.M., Asaulenko, L.G., Ostapchuk, A.M., 2009. Features of development of mono- and associative cultures of sulfate-reducing bacteria and formation of exopolymer complex. Mikrobiologii Zhurnal 71 (2), 20–26. (in Ukrainian with English summary)

Qiu, Y.-Y., Guo, J.-H., Zhang, L., Chen, G.-H., Jiang, F., 2017. A highrate sulfidogenic process based on elemental sulfur reduction: cost-effectiveness evaluation and microbial community analysis. Biochemical Engineering Journal 128, 26–32.

Rajasekar, A., Ting, Y.-P., 2010. Microbial Corrosion of Aluminum 2024 Aeronautical Alloy by Hydrocarbon Degrading Bacteria Bacillus cereus ACE4 and Serratia marcescens ACE2. Industrial & Engineering Chemistry Research 49, 6054–6061.

Romanenko, V.I., Kuznetsov, S.I., 1974. Ecology of microorganisms of fresh reservoirs (Ekologiya mikroorganizmov presnyih vodoemov), Nauka, Leningrad. (in Russian).

Salgar-Chaparro, S.J., Darwin, A., Kaksonen, A.H., Machuca, L.L., 2020. Carbon steel corrosion by bacteria from failed seal rings at an offshore facility. Scientific reports 10 (1), 12287.

Salgar-Chaparro, S.J., Silva-Plata, B.A., 2008. Caracterizacion de la comunidad microbiana residente en aguas de produccion de tres campos de explotacion petrolera, con especial enfasis en grupos asociados a procesos corrosivos. Proyecto. Universidad Industrial de Santander. (in Spanish with English summary)

Satoh, H., Odagiri, M., Ito, T., Okabe, S., 2009. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortor specimens in a corroded sewer system. Water Research 43, 4729–4739.

Stahl, D.A., Lane, D.I., Olsen, G.L., Pace, N.R., 1984. Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science, 224, 409–411.

Su, H., Mi, Sh., Peng, X., Han, Y., 2019. The mutual influence between corrosion and the surrounding soil microbial communities of buried petroleum pipelines. RSC Advances 9, 18930–18940.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30 (12), 2725–2729.

Tkachuk, N., Zelena, L., Mazur, P., Lukash, O., 2020. Genotypic, physiological and biochemical features of Desulfovibrio strains in a sulfidogenic microbial community isolated from the soil of ferrosphere. Ecological questions 31 (2), 79–88.

Tkachuk, N.V., Zelena, L.B., Parmynska, V.S., Yanchenko, V.O., Demchenko, A.M., 2017. Identification of heterotrophic soil ferrosphere bacteria and their sensitivity to the pesticide linuron, Mikrobiologii Zhurnal 9 (4), 75–87. (in Ukrainian with English summary).

Vaschenko, I.M., Lange, K.P., Merkulov, M.P., 1982. Workshop on the basics of rural farming (Praktikum po osnovam selskogo hazyaystva), Prosveschenie, Moskva. (in Russian).

Vincke, E., Boon, N., Verstraete, W., 2001. Analysis of the microbial communities on corroded concrete sewer pipes – a case. Applied Microbiology and Biotechnology 57, 776–785.

Wang, Y.S., Liu, L., Fu, Q., Sun, J., An, Z.Y., Ding, R., Li, Y., Zhao, X.D., 2020. Effect of Bacillus subtilis on corrosion behavior of 10MnNiCrCu steel in marine environment. Scientific Reports 10, 5744.

Zhu, X., Lubeck, J., Kilbane II J.J., 2003. Characterization of microbial communities in gas industry pipelines. Applied and Environmental Microbiology 69, 5354–5363.
Go to article

Authors and Affiliations

Nataliia Tkachuk
Liubov Zelena

  1. Department of Biology, T.H. Shevchenko National University “Chernihiv Colehium”, Hetman Polubotok Str. 53, 14013, Chernihiv, Ukraine
  2. Department of Physiology of Industrial Microorganisms, Danylo Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Acad. Zabolotny Str. 154, 03143 Kyiv, Ukraine
Download PDF Download RIS Download Bibtex


Plastics are materials with many properties that make them extremely popular in everyday life and various industries. Studies show that plastic debris is global pollution and widespread in virtually all ecosystems. This study aimed to assess the coastal sediments of Ełckie Lake in terms of the presence of microplastics. Samples of sediments (n = 37) from the coastal zone of Ełckie Lake were drawn from different areas, including urban, rural, and tourist locations, and beaches. After the coastal sediment samples taking, they were subjected to density separation, filtration, and visual evaluation using the Olympus BX63 fluorescent microscope. Particles were classified according to the category of visible characteristics of microplastics including size, shape and colour. The results of the study showed the presence of microplastics in 84% of the examined coastal sediment samples of Ełckie Lake. Fibres, flakes, granules, and foils (films) had found in 58%, 45%, 32%, and 13% of the samples that contained microplastic, respectively. The majority of the detected microplastic was 0.5–1 mm in size and black was the dominant colour. Spatial variability was perceived in microplastic concentrations, giving premises to the assumption of dependence between local human activity and the content of particles.
Go to article


Andrady, A.L., 2011. Microplastics in the marine environment. Marine Pollution Bulletin 62, 1596–1605.

Andrady, A.L., Neal, M.A., 2009. Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 1977–1984.

Ballent, A., Corcoran, P.L., Madden, O., Helm, P.A., Longstaffe, F.J., 2016. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Marine Pollution Bulletin 110, 383–395.

Bańkowska, A., 2007. Performance evaluation of the BIO-HYDRO structures in recultivation of the Elckie Lake. Przegląd Naukowy. Inżynieria i Kształtowanie Środowiska 16, 21–28 (in Polish with English summary).

Batel, A., Linti, F., Scherer, M., Erdinger, L., Braunbeck, T., 2016. Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environmental Toxicology and Chemistry 35, 1656–1666.

Claessens, M., Meester, S. De, Landuyt, L. Van, Clerck, K. De, Janssen, C.R., 2011. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bulletin 62, 2199–2204.

Cole, M., Lindeque, P., Halsband, C., Galloway, T.S., 2011. Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin 62, 2588–2597.

Collignon, A., Hecq, J.-H., Galgani, F., Collard, F., Goffart, A., 2014. Annual variation in neustonic micro- and meso-plastic particles and zooplankton in the Bay of Calvi (Mediterranean-Corsica). Marine Pollution Bulletin 79, 293–298.

Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., Geissen, V., 2019. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment 671, 411–420.

da Costa, J.P., Duarte, A.C., Rocha-Santos, T.A.P., 2017. Microplastics – Occurrence, Fate and Behaviour in the Environment. Comprehensive Analytical Chemistry 75, 1–24.

Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin 44, 842–852.

Desforges, J.P.W., Galbraith, M., Ross, P.S., 2015. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean. Archives of Environmental Contamination and Toxicology 69, 320–330.

Ding, L., Mao, R. F., Guo, X., Yang, X., Zhang, Q., Yang, C., 2019. Microplastics in surface waters and sediments of the Wei River, in the northwest of China. Science of the Total Environment 667, 427–434.

Duis, K., Coors, A., 2016. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe 28, 1–25.

Dümichen, E., Barthel, A.K., Braun, U., Bannick, C.G., Brand, K., Jekel, M., Senz, R., 2015. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Research 85, 451–457.

Dunalska, J.A., 2019. Lake restoration – theory and practice. Warszawa. Wydawnictwo Polskiej Akademii Nauk (in Polish with English summary).

Eerkes-Medrano, D., Thompson, R.C., Aldridge, D.C., 2015. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research 75, 63–82.

Efimova, I., Bagaeva, M., Bagaev, A., Kileso, A., Chubarenko, I.P., 2018. Secondary microplastics generation in the sea swash zone with coarse bottom sediments: Laboratory experiments. Frontiers in Marine Science 5, 313.

Faure, F., Corbaz, M., Baecher, H., De Alencastro, L.F., 2012. Pollution due to plastics and microplastics in lake Geneva and in the Mediterranean sea. Archives des Sciences 65, 157–164.

Faure, F., Demars, C., Wieser, O., Kunz, M., De Alencastro, L.F., 2015. Plastic pollution in Swiss surface waters: Nature and concentrations, interaction with pollutants. Environmental Chemistry 12, 582–591.

Fischer, E.K., Paglialonga, L., Czech, E., Tamminga, M., 2016. Microplastic pollution in lakes and lake shoreline sediments – a case study on Lake Bolsena and Lake Chiusi (central Italy). Environmental Pollution 213, 648–657.

Free, C.M., Jensen, O.P., Mason, S.A., Eriksen, M., Williamson, N.J., Boldgiv, B., 2014. High-levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin 85, 156–163.

GESAMP, 2015. Sources, fate and effects ofmicroplastics in the marine environment: a global assessment. London: IMO/FAO/UNESCO- IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection.

Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M., 2012. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science and Technology 46, 3060–3075.

Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E., Svendsen, C., 2017. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment 586, 127–141.

Imhof, H.K., Ivleva, N.P., Schmid, J., Niessner, R., Laforsch, C., 2013. Contamination of beach sediments of a subalpine lake with microplastic particles. Current Biology 23, R867–R868.

Klein, S., Worch, E., Knepper, T.P., 2015. Occurrence and spatial distribution of microplastics in river shore sediments of the rhine main area in Germany. Environmental Science and Technology 49, 6070–6076.

Lee, H., Shim, W.J., Kwon, J.H., 2014. Sorption capacity of plastic debris for hydrophobic organic chemicals. Science of the Total Environment 470–471, 1545–1552.

Lee, J., Hong, S., Song, Y.K., Hong, S.H., Jang, Y.C., Jang, M., Heo, N.W., Han, G.M., Lee, M.J., Kang, D., Shim, W.J., 2013. Relationships among the abundances of plastic debris in different size classes on beaches in South Korea. Marine Pollution Bulletin 77, 349–354.

Lenz, R., Enders, K., Beer, S., Sørensen, T.K., Stedmon, C.A., 2016. Analysis of Microplastic in the Stomachs of Herring and Cod from the North Sea and the Baltic Sea. Lyngby: DTU Aqua 1–30.

Li, J., Liu, H., Paul Chen, J., 2018. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research 137, 362–374.

Lin, L., Zuo, L.Z., Peng, J.P., Cai, L.Q., Fok, L., Yan, Y., Li, H.X., Xu, X.R., 2018. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China. Science of the Total Environment 644, 375–381.

Magnusson, K., Eliasson, K., Fråne, A., Haikonen, K., Hultén, J., Olshammar, M., Stadmark, J., Voisin, A., 2016. Swedish sources and pathways for microplastics to the marine environment A review of existing data. IVL Swedish Environmental Research Institute,Report C 183, 1–87.

Mathalon, A., Hill, P., 2014. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Marine Pollution Bulletin 81, 69–79.

Moore, C.J., 2008. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research 108, 131–139.

Napper, I.E., Bakir, A., Rowland, S.J., Thompson, R.C., 2015. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Marine Pollution Bulletin 99, 178–185.

Napper, I.E., Thompson, R.C., 2016. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Marine Pollution Bulletin 112, 39–45.

Nizzetto, L., Futter, M., Langaas, S., 2016. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environmental Science and Technology 50, 10777–10779.

Novotny, T.E., Lum, K., Smith, E., Wang, V., Barnes, R., 2009. Cigarettes butts and the case for an environmental policy on hazardous cigarette waste. International Journal of Environmental Research and Public Health 6, 1691–1705.

Peters, C.A., Bratton, S.P., 2016. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA. Environmental Pollution 210, 380–387.

Piñon-Colin, T. de J., Rodriguez-Jimenez, R., Rogel-Hernandez, E., Alvarez-Andrade, A., Wakida, F.T., 2020. Microplastics in stormwater runoff in a semiarid region, Tijuana, Mexico. Science of the Total Environment 704, 135411.

PlasticsEurope, 2019. Plastics – the Facts 2019: An analysis of European plastics production, demand and waste data. Report, 1–42.

Rochman, C.M., Browne, M.A., Halpern, B.S., Hentschel, B.T., Hoh, E., Karapanagioti, H.K., Rios-Mendoza, L.M., Takada, H., Teh, S., Thompson, R.C., 2013. Policy: Classify plastic waste as hazardous. Nature 494, 169–170.

Rodrigues, M.O., Abrantes, N., Gonçalves, F.J.M., Nogueira, H., Marques, J.C., Gonçalves, A.M.M., 2018. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal). Science of the Total Environment 633, 1549–1559.

Sruthy, S., Ramasamy, E. V., 2017. Microplastic pollution in Vembanad Lake, Kerala, India: The first report of microplastics in lake and estuarine sediments in India. Environmental Pollution 222, 315–322.

Tanaka, K., Takada, H., Yamashita, R., Mizukawa, K., Fukuwaka, M. aki, Watanuki, Y., 2013. Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Marine Pollution Bulletin 69, 219–222.

Turner, S., Horton, A.A., Rose, N.L., Hall, C., 2019. A temporal sediment record of microplastics in an urban lake, London, UK. Journal of Paleolimnology 61, 449–462.

van Wezel, A., Caris, I., Kools, S.A.E., 2016. Release of primary microplastics from consumer products to wastewater in the Netherlands. Environmental Toxicology and Chemistry 35, 1627–1631.

Vaughan, R., Turner, S.D., Rose, N.L., 2017. Microplastics in the sediments of a UK urban lake. Environmental Pollution 229, 10–18.

Wang, J., Peng, J., Tan, Z., Gao, Y., Zhan, Z., Chen, Q., Cai, L., 2017a. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere 171, 248–258.

Wang, J., Tan, Z., Peng, J., Qiu, Q., Li, M., 2016. The behaviors of microplastics in the marine environment. Marine Environmental Research 113, 7–17.

Wang, W., Ndungu, A.W., Li, Z., Wang, J., 2017b. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Science of the Total Environment 575, 1369–1374.

Xiong, X., Zhang, K., Chen, X., Shi, H., Luo, Z., Wu, C., 2018. Sources and distribution of microplastics in China’s largest inland lake – Qinghai Lake. Environmental Pollution 235, 899–906.

Yonkos, L.T., Friedel, E.A., Perez-Reyes, A.C., Ghosal, S., Arthur, C.D., 2014. Microplastics in four estuarine rivers in the chesapeake bay, U.S.A. Environmental Science and Technology 48, 14195–14202.

Yu, X., Peng, J., Wang, J., Wang, K., Bao, S., 2016. Occurrence of microplastics in the beach sand of the Chinese inner sea: The Bohai Sea. Environmental Pollution 214, 722–730.

Yuan, W., Liu, X., Wang, W., Di, M., Wang, J., 2019. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotoxicology and Environmental Safety 170, 180–187.

Yurtsever, M., 2019. Tiny, shiny, and colorful microplastics: Are regular glitters a significant source of microplastics? Marine Pollution Bulletin 146, 678–682.

Zbyszewski, M., Corcoran, P.L., Hockin, A., 2014. Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. Journal of Great Lakes Research 40, 288–299.

Zhang, K., Su, J., Xiong, X., Wu, X., Wu, C., Liu, J., 2016. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China. Environmental Pollution 219, 450–455.

Zhang, K., Xiong, X., Hu, H., Wu, C., Bi, Y., Wu, Y., Zhou, B., Lam, P.K.S., Liu, J., 2017. Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China. Environmental Science and Technology 51, 3794–3801.

Zhou, Q., Zhang, H., Fu, C., Zhou, Y., Dai, Z., Li, Y., Tu, C., Luo, Y., 2018. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma 322, 201–208.

Zobkov, M., Esiukova, E., 2017. Microplastics in Baltic bottom sediments: Quantification procedures and first results. Marine Pollution Bulletin 114, 724–732.
Go to article

Authors and Affiliations

Weronika Rogowska
Elżbieta Skorbiłowicz
Mirosław Skorbiłowicz
Łukasz Trybułowski

  1. Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Technology in Environmental Engineering, Wiejska 45E, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex


The article presents results of the faunistic analysis of the Leb 1 sediment core collected from the marginal zone of the Lake Łebsko. The 5 m long core contained 10,603 specimens of freshwater and brackish-marine fauna, represented by 13 taxa of molluscs, 3 species of ostracods, 2 taxa of foraminifers and a species of the order Coleoptera, and genera Balanus and Gammarus. Lithology of the sediments and species composition of the fauna permitted distinguishing 3 development phases of the Lake Łebsko: brackish-marine phase (500–400 cm), limnic phase with varied salinity (400–100 cm) and swamp phase (100–0 cm), indicating progressive overgrowing of the marginal zone of the lake since the 13th century.
Go to article


Aaby, B., Berglund, B.E., 1986. Characterization of peat and lake deposits. In: Berglund, B.E. (Ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester- New York-Brisbane-Toronto-Singapore, 231–246.

Alexandrowicz, S.W., 1998. Holocene assemblages of mollusc in the near-shore zone of Southern Baltic. Folia Malacologica 6, 15–18.

Alexandrowicz, S.W., 1999. Malacofauna and stratigraphy of Late Vistulian and Holocene deposits in the Southern Baltic Coastal Zone. Quaternary Studies in Poland spec. issue, 37–50.

Alexandrowicz, S.W., Alexandrowicz, W.P., 2011. Malacological analysis. Methods of research and interpretations (Analiza malakologiczna. Metody badań i interpretacji). Polska Akademia Umiejętności, Rozprawy Wydziału Przyrodniczego 3, 1–300 (in Polish).

Brodniewicz, I., 1965. Recent and some Holocene Foraminifera of the Southern Baltic Sea. Acta Palaeontologica Polonica 10 (2), 131–235.

Brodniewicz, I., 1972. Brenkowo. Faunal analysis. Guide-book of the excursion. International Conference in Poland, Sopot, September, 22–26, 1972.

INQUA, Subcomission on Shorelines of Nortwestern Europe, 29–32. Brodniewicz, I., Rosa, B., 1967. The boring hole and the fauna at Czołpino, Poland. Baltica 3, 61–86.

Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51 (1), 337–360.

Falniowski, A., 1987. Hydrobioidea of Poland. Folia Malacologica 1, 1–122.

Falniowski, A., 1989. Przodoskrzelne (Prosobranchia, Gastropoda, Mollusca) Polski. 1. Neritidae, Viviparidae, Valvatidae, Bithyniidae, Rissoidae, Aciculidae. Zeszyty Naukowe Uniwersytetu Jagiellońskiego, CMX, Prace Zoologiczne 35, 1–148 (in Polish with English summary).

Grimm, E.C., 1990. TILIA and TILIA.GRAPH. PC spreadsheet and graphics software for pollen data. INQUA Working Group on Data-Handling Methods Newsletter 4, 5–7.

Jagnow, B., Gosselck, F., 1987. Bestimmungsschlüssel für die Gehäuseschnecken und Muscheln der Ostsee. Mitteilungen aus dem Museum für Naturkunde in Berlin. Zoologisches Museum und Institut für Spezielle Zoologie (Berlin) 63 (2), 191–268.

Keyser, D., Aladin, N., 2004. Noding in Cyprideis torosa and its causes. Studia Quaternaria 21, 19–24. Piechocki, A., 1979. Mięczaki (Mollusca), Ślimaki (Gastropoda). Fauna słodkowodna Polski 7, Państwowe Wydawnictwo Naukowe, Warszawa-Poznań, 6–174 (in Polish).

Piechocki, A., Dyduch-Falniowska, A., 1993. Miȩczaki (Mollusca), Małże (Bivalvia), Fauna słodkowodna Polski 7A, Wydawnictwo Naukowe PWN, pp. 200 (in Polish).

Rotnicki, K., 2001. Stratigraphy and palaeogeography of Vistulian of the Gardno-Łeba Lowland (Stratygrafia i paleogeografia vistulianu Niziny Gardnieńsko-Łebskiej). In: Rotnicki, K. (Ed.), Przemiany środowiska geograficznego nizin nadmorskich południowego Bałtyku w vistulianie i holocenie. Bogucki Wydawnictwo Naukowe, Poznań, 19–29 (in Polish).

Rotnicki, K., Alexandrowicz, S.W., Pazdur, A., Goslar, T., Borówka, R.K., 2009. Stages of the formation of the Łeba Barrier – lagoon system on the basis of the geological cross-section near Rąbka (southern Baltic coast, Poland). Studia Quaternaria 26, 3–24.

Sywula, T., 1974. Małżoraczki (Ostracoda). Fauna słodkowodna Polski. Z. 24, Polska Akademia Nauk, Instytut Zoologii, Oddział w Poznaniu, Państwowe Wydawnictwo Naukowe, Warszawa-Poznań, 279 (in Polish).

Tobolski, K., 1972. Age and genesis of dunes at the south-eastern shore of Lake Łebsko. Badania Fizjograficzne nad Polską Zachodnią 25B, 135–146 (in Polish with English summary).

Troels-Smith, J., 1955. Characterisation of unconsolidated sediments. Danmarks Geologiske Undersøgelse Ser. IV, 3 (10), 1–73.

van Harten, D., 2000. Variable noding in Cyprideis torosa (Ostracoda, Crustacea): an overview, experimental results and a model from Catastrophe Theory. Hydrobiologia 419, 131–139.

Wojciechowski, A., 1994. Deposits, brackish-water and marine malacofauna of the Holocene age in Lake Łebsko, Gardno-Łeba Coastal Coastal Plain. In: Rotnicki, K. (Ed.), Polish Coast – Past, Present and Future. Quaternary Research Institute, Adam Mickiewicz University, Poznań, 96–100.

Wojciechowski, A., 1995. Holocene deposits and molluscan assemblages in Lake Łebsko, Gardno-Łeba Coastal Plain. Journal of Coastal Research SI 22, 237–243.

Wojciechowski, A., 1996. Principles of malacostratigraphy of the South Baltic lakes (Podstawy malakostratygrafii jezior południowobałtyckich). XII Krajowe Seminarium Malakologiczne, Łódź, 25–27 kwietnia 1996, 40–41 (in Polish).

Wojciechowski, A., 1999. Holocene mollusc assemblages in the Kluki- 115a profile, Gardno-Łeba Coastal Plain. In: Borówka, R.K., Młynarczyk, Z., Wojciechowski, A. (Eds), Ewolucja geosystemów nadmorskich południowego Bałtyku. Bogucki Wydawnictwo Naukowe, Poznań-Szczecin, 175–185 (in Polish with English summary).

Wojciechowski, A., 2007. New malacological profiles from Lake Łebsko and their stratigraphical significance. In: Florek, W. (Ed.), Geologia i geomorfologia pobrzeża i południowego Bałtyku 7, 101–127 (in Polish with English summary).

Wojciechowski, A., 2008. Evolution of coastal lakes of the Gardno-Łeba Lowland in the light of malacological research. Landform Analysis 7, 154–171 (in Polish with English summary).

Wojciechowski, A., 2011. Stages of the evolution of the South Baltic coast as recorded in the molluscan fauna. Journal of Coastal Research SI 64, 711–715.
Go to article

Authors and Affiliations

Paulina Wojciechowska
Adam Wojciechowski

  1. Pomeranian University in Słupsk, Institute of Biology and Earth Sciences, ul. Partyzantów 27, 76-200 Słupsk, Poland
Download PDF Download RIS Download Bibtex


In spite of modern trends in the development of the eastern Polesye flora, the relict have been preserved in the aquatic ecotopes of Europe, including eastern Polesye. The paper highlights the peculiarities of the distribution in the region of three aquatic Tertiary relics preserved by the Bern Convention. According to the results of a field research, the degree of a modern rarity of the aquatic relict species in eastern Polesye was established, in particular, a very rare species ( Aldrovanda vesiculosa), a moderately rare species ( Trapa natans) and a relatively rare species ( Salvinia natans). The current distribution of these relict species in the region has been positively affected by the increase in the values of maximum temperatures and isotherms of the summer months. A negative impact is made by the abrupt changes in the hydrological regime and the growth of anthropogenic eutrophication of reservoirs. Aldrovanda vesiculosa eliminates with minor changes in living conditions; Salvinia natans is the most tolerant to anthropogenic factors, but shows annual fluctuations in numbers; Trapa natans is stable distributed and has a tendency to expanding of its populations. The relics are the dominants of the Salvinio–Spirodeletum (polyrrhizae), Lemno–Utricularietum vulgaris, Spirodelo– Aldrovandetum vesiculosae, Trapetum natantis and Trapо–Nymphoidetum (peltatae) communities.
Go to article


Berta, J., 1961. Beitrag zur Ökologie und Verbreitung von Aldrovanda vesiculosa L. Biológia 16, 561–573.

Convention on the Conservation of European Wildlife and Natural Habitats, 1979, Bern, 89 pp.

Cross, A., Adamec, L., 2020. Aldrovanda vesiculosa. The IUCN Red List of Threatened Species 2020,

Dubyna, D.V., 2006. Higher aquatic vegetation. Lemnetea, Potametea, Ruppietea, Zosteretea, Isoёto-Littorelletea (Eleocharicion acicularis, Isoёtion lacustris, Potamion graminei, Sphagno-Utricularion), Phragmito-Magnocaricetea (Glycerio-Sparganion, Oenanthion aquaticae, Phragmition communis, Scirpion maritimi). In: Shelyag-Sosonko, Yu.R. (Ed.), Phytosociocentre, Kyiv, 412 pp. (in Ukrainian).

Dubyna, D.V., Stoyko, S.M., Tasenkevich, L.A., Shelyag-Sosonko, Yu.R., Groudova, E., Gusak, Sh., Otyagelova, G., Erzhabkova, O., 1993. Macrophytes are indicators of changes in the natural environment. In: Sytnik, K.M., Geyny, S. (Eds), Naukova dumka, Kyiv, 436 pp. (in Russian).

Kamiński, R., 1987. Studies on the ecology of Aldrovanda vesiculosa L. I. Ecological differentiation of A. vesiculosa population under the influence of chemical factors in the habitat. Ekologia Polska 35, 559–590.

Kamiński, R., 2006. Restitution of the waterwheel plant (Aldrovanda vesiculosa L.) in Poland and determining the factors of its survival under a temperate climate (Restytucja Aldrovandy pęcherzykowatej (Aldrovanda vesiculosa L.) w Polsce i rozpoznanie czynników, decydujących o jej przetrwaniu w klimacie umiarkowanym). Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław, 105 pp. (in Polish).

Korchagin, A.A., 1976. Field geobotany. In: Lavrenko, E.M. (Ed.), Methodical guidance. Vol. 5. PH AS USSR, Moscow, 320 pp. (in Russian).

Lukash, O., 2007. Distribution, cenotic characteristic and protection of habitats of plants of the Bern Convention in eastern Polesye. Thaiszia – Journal of Botany 17, 33–58.

Lukash, O.V., 2008. The flora of the Eastern Polissia vascular plants: the history of the study, summary. Phytosociocentre, Кyiv, 436 pp. (in Ukrainian).

Lukash, O.V., 2009. The flora of the Eastern Polissia vascular plants: the structure and dynamics Phytosociocentre, Кyiv, 200 pp. (in Ukrainian).

Lukash, O.V., Rak, O.O., 2008. Salvinia natans (L.) All. in eastern Polesye. Plant introduction 1, 38–43 (in Ukrainian).

Lukash, O., Kirvel, I., 2018. The geographical structure of the flora of the eastern Polesye vascular plants. Słupskie prace geograficzne 15, 5–17.

Marković, G.S., Vićentijević-marković, G.S., Tanasković, S.T., 2015. First Record of Water Chestnut (Trapa natans L., Trapaceae, Myrtales) in Central Serbia. Journal of Central European Agriculture 16(4), 436–444.

Meusel, H., Jäger, E., Weinert, E., 1965. Vergleichende Chorologie der zentraleuropäischen Flora. I. Fischer, Jena, 583 pp.

Mucina, L., Büultmann, H., Dierßen, K., Theurillat, J.-P., Raus, T., Čarni, A., Šumberová, K., Willner, W., Dengler, J., García, R.G., Chytrý, M., Hájek, M., Di Pietro, R., Iakushenko, D., Pallas, J., Daniёls, F.J.A., Bergmeier, E., Guerra, A.S., Ermakov, N., Valachovič, M., Schaminće, J. H.J., Lysenko, T., Didukh, Y.P., Pignatti, S., Rodwell, J.S., Capelo, J., Webe,r H.E., Solomeshch, A., Dimopoulos, P., Aguiar, C., Hennekens, S.M., Tichý, L., 2016. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science 19 (S1), 3–264.

Rothmaler, W., Schubert, R., Went, W., 1986. Exkursionsflora für die Gebiete der DDR und der BRD. Band. 4, Kritischer Band. Volk und Wissen Volkseigener Verlag, Berlin, 811 pp.

Săndulescu, E.B., Scăeţeanu, G.V., Şchiopu, T., Oltenacu, N., M. Stavrescu-Bedivan, M.-M., 2016. Morpho-anatomy and adaptation to some Romanian aquatic environments of Nymphoides peltata (Gmel.) O. Kuntze (Asterales: Menyanthaceae). Scientific Papers. Series A. Agronomy 59, 537–542.

Saksonov, S.V., Senator, S.A., Koneva, N.V., 2011. Classification of relic plants of the central part of the Volga upland. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences 13 (5), 64–67 (in Russian).

The Plant List (2013). Version 1.1. Published on the Internet;

Wamelink, G.W.W, Goedhart, P.W, Frissel, J.Y., 2014. Why Some Plant Species Are Rare. PLoS ONE 9(7): e102674,
Go to article

Authors and Affiliations

Oleksandr Lukash
Iryna Miroshnyk
Svitlana Strilets
Oleksandr Rak
Olena Sazonova

  1. T.H. Shevchenko National University “Chernihiv Colehium”, 53, Hetman Polubotko Str., Chernihiv, 14013, Ukraine
  2. M.M. Gryshko National Botanical Garden of the National Academy of Sciences of Ukraine; 1, Timiriazievska Str., 1, Kyiv, 01014, Ukraine
Download PDF Download RIS Download Bibtex


The research aimed to make an inventory of the vascular flora of 11 parks and gardens of the Pomeranian Cistercian Trail, with particular emphasis on taxa attached to old deciduous forests. A total of 62 species were registered, recognised as indicators of old deciduous forests in Poland. The presence of species of this group was confirmed in all of the analysed objects, but their number varied from 7 to 50. The group of ancient woodland species includes forest species for which the light indicator values are lower than or equal to 4 (plants of shadowy places, with a relative light intensity). The group of indicator species also includes forest geophytes and forest myrmecochores, autochores and barochores, as well as woodland species that can tolerate stress, under the classification of ecological strategy types S, S/CSR, S/SC and S/SR.
Go to article


Anioł-Kwiatkowska, J., 2003. Wielojęzyczny słownik florystyczny. Wyd. Uniwersytetu Wrocławskiego, 3–226.

Brzeziecki, B., Kienast, F., 1994. Classifying the life-history strategies of trees on the basis of the Grimian model. Forest Ecology and Management 69 (1–3), 167–187.

Brzustowicz, G., 2013. Konwent cysterek w Koszalinie. Zarys dziejów. Materiały Zachodniopomorskie, Nowa Seria, Archeologia X (1), 159–189.

Chmiel, J., 1993. Flora roślin naczyniowych wschodniej części Pojezierza Gnieźnieńskiego i jej antropogeniczne przeobrażenia w wieku XIX i XX. Część I. Prace Zakładu Taksonomii Roślin UAM 1, 5–202.

Dzwonko, Z., 1993. Relations between the floristic composition of isolated young woods and their proximity to ancient woodland. Journal of Vegetation Science 4, 693–698.

Dzwonko, Z., Loster, S., 1992. Species richness and seed dispersal to secondary woods in southern Poland. Journal of Biogeography 19, 195–204.

Dzwonko, Z., Loster, S., 2001. Wskaźnikowe gatunki starych lasów i ich znaczenie dla ochrony przyrody i kartografii roślinności. Prace Geograficzne 178, 119–132.

Engel, G., 1977. Ekspertyza ogólna dendrologiczno-techniczna. Park dworski Bukowo Morskie, gm. Darłowo, woj. Koszalin. Pracownie Konserwacji Zabytków, Szczecin (maszynopis).

Grass von, G.B., 2010. Memories. Elsir Verlag, Amberg: 7–125. (in German)

Grime, J.P., 2002. Plant Strategies, Vegetation Processes, and Ecosystem Properties. John Wiley & Sons, Ltd., Chichester-New York-Weinheim-Brisbane-Singapore-Toronto, 3–417.

Hermy, M., Honnay, O., Firbank, L., Grashof-Bokdam, C., Lawesson, J.E., 1999. A ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biological Conservation 91, 9–22.

Hinz, J., 1996. Pommern. Lexikon. Geografie-Geschichte-Kultur. Bechtermünz Verlag, Augsburg, 287–288.

Hodgson, J.G., Wilson, P.J., Hunt, R., Grime, J.P., Thompson, K., 1999. Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos 39, 282–294.

Hoevel, R., 1989. Buckow Pom. In: Vollack, M. (Ed.), Der Kreis Schlawe. Ein pommersches Heimatbuch. Die Städte u. Landgemeinden, 2, 856–859.

Hoogeweg, H., 1924. Stifter und Klöster der Provinz Pommern. 1, 164–435, Stettin. Jackowiak, B., 1998. Struktura przestrzenna flory dużego miasta. Studium metodyczno-problemowe. Prace Zakładu Taksonomii Roślin UAM 8, 3–227.

Janocha, H.W., Lachowicz, F.J., 1991. Góra Chełmska. Miejsce dawnych kultur i sanktuarium Maryjne. Koszalińskie Towarzystwo Społeczno-Kulturalne, Koszalin, 5–72.

Jarosz, K., Rozmarynowska, K., 1983. Ogród dworski w Żarnowcu. Katalog parków województwa gdańskiego, gmina Krokowa. Zespół Autorskich Pracowni Architektonicznych, Gdańsk (typescript).

Jarosz, K., Rozmarynowska, K., 1984. Ogród zamkowy w Starzyńskim Dworze. Katalog parków województwa gdańskiego, gmina Puck. Zespół Autorskich Pracowni Architektonicznych, Gdańsk (typescript).

Jaworski, A., 2019. Hodowla lasu. Charakterystyka hodowlana drzew i krzewów leśnych. Powszechne Wydawnictwo Rolnicze i Leśne, Warszawa, 5–603.

Kaczyńska, I., Kaczyński, T., 2010. Cystersi w Polsce. Sport i Turystyka, Muza, 172–181. Kownas, S., Sienicka, A., 1965. Parki, zabytkowe drzewa i rezerwaty województwa koszalińskiego. Szczecińskie Towarzystwo Naukowe, Wydz. Nauk Przyrodniczo-Rolniczych 27, 3–180.

Lakowitz, K., 1930. Der Schloßgarten in Oliva. Führer des Staatlichen Landesmuseums für Danziger Geschichte 4, 3–24.

Matlack, G.R., 1994. Plant species migration in a mixed-history forest landscape in eastern North America. Ecology 75, 1491–1502.

Matuszkiewicz, W., 2001. Przewodnik do oznaczania zbiorowisk roślinnych Polski. Vademecum Geobotanicum 3, 321–418.

Mirek, Z., Piękoś-Mirkowa, H., Zając, A., Zając, M., 2002. Flowering plants and pteridophytes of Poland. A checklist. Biodiversity of Poland 1, 9–442.

Murray, D.R., 1986. Seed dispersal by water. In: Murray, D.R. (Ed.), Seed Dispersal, 49–85. Academic Press, Sydney, Australia.

Odyniec, W., 1998. Walka o przetrwanie. In: Odyniec, W., Kupper, R. (Eds), Dzieje Kartuz 1, 165–184. Wyd. Remus, Kartuzy.

Podbielkowski, Z., 1995. Wędrówki roślin. Wyd, Szkolne i Pedagogiczne, 5–238.

Popielas-Szultka, B., 1980. Rozwój gospodarczy dominium bukowskiego od połowy XIII do połowy XVI wieku. Wyd. WSP Słupsk, 3–281.

Popielas-Szultka, B., 2009. Posiadłości ziemskie klasztoru bukowskiego na ziemiach Sławieńskiej i Darłowskiej. In: Rączkowski, W., Sroka, J. (Eds), Historia i kultura Ziemi Sławieńskiej, Fundacja Dziedzictwo 7, 167–175.

Ratyńska, H., Wojterska, M., Brzeg, A., 2010. Multimedialna encyklopedia zbiorowisk roślinnych Polski. Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej w Warszawie, CD 1–2.

Raunkiær, Ch., 1905. Types biologiques pour la géographie botanique, Overs. Kongelige Danske Videnskabernes Selskabs Forhandlinger, 5, 347–437.

Rees, C., 1989. See Buckow, In: Vollack, M. (Ed.), Der Kreis Schlawe. Ein pommersches Heimatbuch. Die Städte u. Landgemeinden, 2, 1176–1181 (in Deutsch).

Regulation of the Ministry of the Environment, 2014. Rozporządzenie Ministra Środowiska z 9 października 2014 roku w sprawie ochrony gatunkowej roślin (Dz.U. RP, nr 0, poz. 1409) (in Polish)

Rozmarynowska, K., 2017. Ogrody odchodzące…? Z dziejów gdańskiej zieleni publicznej 1708–1945. Fundacja Terytoria Książki, Gdańsk, 160–171.

Rydz, E., Olejnik, P., 2004. (Góra Chełmska as a pilgrimage center in Central Pomerania) Góra Chełmska ośrodkiem pielgrzymkowym na Pomorzu Środkowym. Peregrinus Cracoviensis 15, 133–151.

Schwarz, Z., Żmijewska, E., 1995. Ogrody Gdańska i okolic. Wyd. Miejski Dom Kultury w Gdańsku, 36–46.

Schwengel, G., 1746. Propago Sacri Ordinis Cartusiensis per Germaniam, de Provincia Alemaniae superioris et domibus Poloniae. Analecta Cartusiana 90/1, 419–420.

Seneta, W., Dolatowski, J., 2003. Dendrologia, Wydawnictwo Naukowe PWN, Warszawa. Sienicka, A., Kownas, S., 1968. Parki, zabytkowe drzewa i rezerwaty województwa gdańskiego. Szczecińskie Towarzystwo Naukowe, Wydz. Nauk Przyrodniczo-Rolniczych 32, 3–103.

Sobisz, Z., 2007. Flora naczyniowa parków dworskich i cmentarzy gminy Darłowo. In: Rączkowski, W., Sroka, J. (Eds), Historia i kultura Ziemi Sławieńskiej, Fundacja Dziedzictwo 6, 301–316.

Sobisz, Z., Truchan M., 2010. Zabytkowe parki podworskie Pomorza Środkowego. Wyd. Nauk. Akademii Pomorskiej, 5–281.

Sobisz, Z., Truchan, M., 2019. Dendroflora parków i ogrodów Pomorskiego Szlaku Cysterskiego. Rocznik Polskiego Towarzystwa Dendrologicznego 67, 81–87.

Sobisz, Z., Truchan, M., 2020. Flora naczyniowa parków i ogrodów Pomorskiego Szlaku Cysterskiego. Typescript.

Solon, J., Borzyszkowski, J., Bidłasik, M., Richling, A., Badora, K., Balon, J., Brzezińska-Wójcik, T., Chabudziński, Ł., Dobrowolski, R., Grzegorczyk, I., Jodłowski, M., Kistowski, M., Kot, R., Krąż, P., Lechnio, J., Macias, A., Majchrowska, A., Malinowska, E., Migoń, P., Myga-Piątek, U., Nita, J., Papińska, E., Rodzik, J., Strzyż, M., Terpiłowski, S., Ziaja, W., 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data, Geographia Polonica, 91 (2), 143–170.

Sukopp, H., 1969. Der Einfluss des Menschen auf die Vegatation. Vegetatio 17, 360–371.

Sukopp, H., 1972. Wandel von Flora und Vegetation in Mitteleuropa unter dem Einfluss des Menschen. Berichte über Landwirtschaft 50(1), 112–139.

Tokarska-Guzik, B., Dajdok, Z., Zając, M., Zając, A., Urbisz, A., Danielewicz, W., Hołdyński C., 2012. Rośliny obcego pochodzenia w Polsce ze szczególnym uwzględnieniem gatunków inwazyjnych. Generalna Dyrekcja Ochrony Środowiska, Warszawa, 5–197.

Van der Pijl, L., 1986. Principles of Dispersal in Higher Plants, 3–154. Springer‐Verlag, Berlin‐Heidelberg‐New York.

Westoby, M., 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 199, 213–227.

Wulf, M., 2003. Preference of plant species for woodlands with differing habitat continuities. Flora 198, 444–460.

Wyrwa, A.M., 2008. Podróże cystersów oraz idea, organizacja i promocja szlaku cysterskiego w Polsce. Studia Periegetica 2, 87–129.

Zarzycki, K., Trzcińska-Tacik, H., Różański, W., Szeląg, Z., Wołek, J., Korzeniak, U., 2002. Ecological indicator values of vascular plants of Poland. Biodiversity of Poland 2, 7–183.
Go to article

Authors and Affiliations

Zbigniew Sobisz
Marcin Kubus
Ewa Szmyt
Krzysztof Strzalkowski

  1. Department of Botany and Nature Protection, Institute of Biology and Earth Sciences, Pomeranian University, Arciszewski Str., 22A, 76-200 Słupsk
  2. Laboratory of Dendrology and Landscaping of Green Areas, West Pomeranian University of Technology, Papieża PawłaVI 3 Str., 71-459 Szczecin, Poland
  3. Scientific Circle of Botanists, Institute of Biology and Earth Sciences, Pomeranian University, Arciszewski Str., 22A,76-200 Słupsk, Poland
Download PDF Download RIS Download Bibtex


Species and generic composition of nematode communities from the epiphytic mosses in the Left-bank Polesie were studied. Nematodes were extracted by a modified Baermann’s method. A total of 47 species was found and they belonged to 34 genera, 21 families and 8 orders. The average number of nematodes was 4077 per 100 g of the moss. Rhabditida, Tylenchida, Plectida and Dorylaimida composed had more species richness (12, 10, 8 and 7 species, respectively). Species of these four orders comprised 78.7%. Representatives of three order Plectida, Dorylaimida and Monhysterida were the most numerous within the considered communities (proportion in the communities were 40.75, 21.30 and 18.65%, respectively). The majority of the identified species were subrecedent (31 or 65.95% of species composition) and accidental species (37 or 78.72%). Three species: Plectus parietinus Bastian, 1865, Mesodorylaimus bastiani Bütschli, 1873 and Geomonhystera villosa Bütschli, 1873 composed the core of nematode communities from epiphytic mosses in the Left-bank Polesie. They were found in 70.21, 57.45 and 53.19% of the samples, proportion in the community of 15.21, 10.03 and 17.96%, respectively.
Go to article


Abebe, E., Andrássy, I., Truanspurger, W., 2006. Freshwater nematodes: ecology and taxonomy. Wallingford, Oxfordshire, UK; Cambridge, MA, USA: CABI Publ., 13–30.

Barbuto, M., Zullini, A., 2006. Moss inhabiting nematodes: influence of the moss substratum and geographical distribution in Europe. Nematology 8 (4), 575–582.

Bongers, T., 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83, 14–19.

Gadea, E., 1988. Sobre la nematofauna muscicola de la Cordillera Real de los Andes de Bolivia. Publicaciones del Departamento de Zoologia, Universidade de Barcelona 14, 7–19.

Georgievska, M., 1990. Characteristics of nematodes community of the ground moss cover in an oak forest on Galicica. Fragmenta Balcanica 14, 151–154.

Glime, J.M., 2012. Invertebrates: Nematodes. Chapt. 4–3. In: Glime, J.M. (Ed.), Bryophyte Ecology 2. Bryological Interaction. 4-3-1 Ebook sponsored by Michigan Technological University and the International Association of Bryologists.

Goodey, T., 1963. Soil and freshwater nematods. Revised by J.B. Goodey from 1951 Ed., 2nd Ed., Wiley, New York, 1–544.

Kiryanova, E.S., Krall, E.L., 1969. Parasitic Nematodes of Plants and Measures of their Control. Nauka, Leningrad, Vol. 1, 1–441 [In Russian].

Lazarova, S., Peneva, V., Peneva, L., 2000. Nematode assemblages from the moss Hypnum cupressiforme Hedw. growing on different substrates in a balkanic durmast oak forest (Quercus dalechampii Ten.) on Mount Vitosha, Bulgaria. Nematology 2, 263–272.

Matuszkiewicz, W., 2019, Przewodnik do oznaczania zbiorowisk roślinnych Polski. Wydawnictwo Naukowe PWN, Warszawa, 540 pp.

Mucina, L., Büultmann, H., Dierßen, K., Theurillat, J.-P., Raus, T., Čarni, A., Šumberová, K., Willner, W., Dengler, J., García, R.G., Chytrý, M., Hájek, M., Di Pietro, R., Iakushenko, D., Pallas, J., Daniёls, F.J.A., Bergmeier, E., Guerra, A.S., Ermakov, N., Valachovič, M., Schaminće, J.H.J., Lysenko, T., Didukh, Y.P., Pignatti, S., Rodwell, J.S., Capelo, J., Weber, H.E., Solomeshch, A., Dimopoulos, P., Aguiar, C., Hennekens, S.M., Tichý, L., 2016. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science 19 (S1), 3–264.

Nesterov, P.I., 1979. Plant parasitic and free-living nematodes of South-West of USSR. Edit. Stiinta. Chisinau, 1–312 [In Russian].

Sayre, R.M., Brunson, L.K., 1971. Microfauna of moss habitats. American Biology Teacher 33, 100–102, 105.

Shevchenko, V.L., Zhylina, T.M., 2016. Taxonomic structure of nematode communities of epiphytic mosses in green plantations of Chernihiv, Ukraine. Vestnik zoologii 50 (6), 477–482.

Solovyeva, G.I., 1986. Ekologia pochvennykh nematod. Nauka, Leningrad, 1–247 [In Russian].

Steiner, W.A., 1994a. The influence of air pollution on moss-dwelling animals: 1. Methodology and composition of flora and fauna. Revue suisse de Zoologie 101, 533–556.

Steiner, W.A., 1994b. The influence of air pollution on moss-dwelling animals: 2. Aquatic fauna with emphasis on Nematoda and Tardigrada. Revue suisse de Zoologie 101, 699–724.

Steiner, W.A., 1994c. The influence of air pollution on moss-dwelling animals: 4. Seasonal and long-term fluctuations of rotifer, nematode and tardigrade populations. Revue suisse de Zoologie 101, 1017–1031.

Steiner, W.A., 1995. The influence of air pollution on moss-dwelling animals: 5. Fumigation experiments with SO2 and exposure experiments. Revue suisse de Zoologie 102 (1), 13–40.

Tischler, W., 1949. Grundzüge der terrestrischen Tierökologie. Braunschweig: Friedrich Vieweg und Sohn, 1–219.

Zullini, A., Peretti, E., 1986. Lead pollution and moss-inhabiting nematodes of an industrial area. Water, Air and Soil Pollution 27, 403–410.
Go to article

Authors and Affiliations

Valentyna Shevchenko
Tetiana Zhylina

  1. T.H. Shevchenko National University “Chernihiv Colehium”, 53, Hetman Polubotko Str., Chernihiv, 14013, Ukraine
Download PDF Download RIS Download Bibtex


In Chernihiv Polesie Solidago canadensis most often grows in ruderal communities of the Berteroëtum incanae association. Characteristic plant species of the Artemisietea vulgaris class have been found in many phytocenoses with Solidago canadensis. A typical ruderal community dominated by S. canadensis was found, in which characteristic species of the xero-mesophytic ruderal vegetation of the Onopordion acanthii are well represented. Initial communities with the S. canadensis coverage of 25 to 60% in combination with the species of this order and the characteristic species of other high syntaxa were found. Most of them are the transformed meadow phytocenoses of the river floodplains and less often – the psammophytic phytocenoses of pine terraces. The process of ruderalization of meadow ecosystems as a result of the invasion of S. canadensis in Chernihiv Polesie was revealed. This process is especially pronounced on the loess islands, where meadows change into semiruderal grasslands and herblands of the Convolvulo arvensis– Agropyrion repentis alliance. S. canadensis invasion leads to xerophytization and unification of the floodplains meadow phytocenoses grassland. The course of these processes is accelerated by anthropogenic pressure on ecosystems and has irreversible consequences. S. canadensis rarely occurs in the Koelerio–Corynephoretea canescentis class psammophytic communities
Go to article


Abhilasha, D., Quintana, N., Vivanco, J., Joshi, J., 2008. Do allelopathic compounds in invasive Solidago canadensis s.l. restrain the native European flora? Journal of Ecology 96, 993–1001.

Arepieva, L.A., Kulikova, Е.Ya., 2017. Сommunities with Solidago canadensis and S. gigantea in the cities of Kursk, Bryansk and Minsk. Plant diversity 3 (11), 38–43 (in Russian).

Bielecka, A., Borkowska, L., Królak, E., 2020. Environmental changes caused by the clonal invasive plant Solidago canadensis. Annales Botanici Fennici. Finnish Zoological and Botanical Publishing Board 57 (1–3), 33–48.

Burda, R.I., Pashkevich, N.A., Boyko, G.V., Fitsaylo, T.V., 2015. Alien species of natural flora of the Forest-Steppe and Steppe. Scientific Opinion of the National Academy of Sciences of Ukraine, Kyiv, 120 pp. (in Ukrainian).

Daineka, M., Timofeev, S., 2018. Development of invasive species Canadian goldenrod (Solidago canadensis L.) in Vetka and Chechersk districts of Gomel region. Bulletin of Science and Practice 4 (4), 12–19 (in Russian).

Dassonville, N., Vanderhoeven, S., Vanparys, V., Hayez, M., Gruber, W., Meerts, P., 2008. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia 157, 131–140.

Dubovik, D.V., Skuratovich, A.N., Miller, D., Spiridovich, E.V., Gorbunov, Yu.N., Vinogradova, Yu.K., 2019. The invasiveness of Solidago canadensis in the Sanctuary «Prilepsky» (Belarus). Nature Conservation Research 4 (2), 48–56.

Gusev, A.P., 2015. Impact of invasion of Canadian goldenrod (Solidago canadensis L.) on restorative succession in abandoned lands (southeast of Belarus). Russian Journal of Biological Invasions 6 (2), 74–77 (in Russian).

Gusev, A.P., Shpileuskaya, N.S., 2016. Invasion of Canadian Goldenrod (Solidago canadensis L.) in a technogenic landscape (on example an open-cast mine on sand). Bulletin of Polesie State University. Natural Sciences Series 2, 3–7 (in Russian).

Hennekens, S.M., Schaminée, J.H.J., 2001. Turboveg, a comprehensive database management system for vegetation data. Journal of Vegetation Science 12, 589–591.

Lavrenko, E.M., Korchagin, A.G., 1976. Field geobotany. The structure of plant communities 5. Nauka, Leningrad, 320 pp. (in Russian).

Lukash, O., Danko, H., 2020. The vegetation of sands in the Сhernihiv city (Ukraine). Studia Quaternaria 37 (1), 31–44.

Lukash, O., Yakovenko, O., Miroshnyk, I., 2018. The mechanical degradation of land surface and the present state of the loess “islands” plant cover of Chernihiv Polesie (Ukraine). Ecological Questions 29 (4), 23–34.

Marynych, A.M., Parkhomenko, H.O., Petrenko, O.M., Shyshenko, P.H., 2003. Improved scheme of physical and geographical zoning of Ukraine. Ukrainian Geographic Journal 1 (41), 21–32 (in Ukrainian).

Matuszkiewicz, W., 2019. Guide to the determination of Polish plant communities (Przewodnik do oznaczania zbiorowisk roślinnych Polski). Wydawnictwo Naukowe PWN, Warszawa, 404 pp. (in Polish).

Mucina, L., Brandes, D., 1985. Communities of Berteroa incana in Europe and their geographical differentiation. Vegetatio 59, 125–136.

Mucina, L., Büultmann, H., Dierßen, K., Theurillat, J.-P., Raus, T., Čarni, A., Šumberová, K., Willner, W., Dengler, J., García, R.G., Chytrý, M., Hájek, M., Di Pietro, R., Iakushenko, D., Pallas, J., Daniёls, F.J.A., Bergmeier, E., Guerra, A.S., Ermakov, N., Valachovič, M., Schaminće, J. H.J., Lysenko, T., Didukh, Y.P., Pignatti, S., Rodwell, J.S., Capelo, J., Weber, H.E., Solomeshch, A., Dimopoulos, P., Aguiar, C., Hennekens, S.M., Tichý, L., 2016. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science 19 (S1), 3–264.

Solomakha, V.A., Kostylov, O.V., Sheliah-Sosonko, Yu.R., 1992. Synanthropic vegetation of Ukraine. Naukova dumka, Kyiv, 250 pp. (in Ukrainian).

Stefanic, E., Puskadija, Z, Stefanic, I., Bubalo, D., 2003. Goldenrod: A valuable plant for beekeeping in north-eastern Croatia. Bee World 84, 88–92.

Tichy, L., 2002. JUICE, software for vegetation classification, Journal of Vegetation Science 13, 451–453.
Go to article

Authors and Affiliations

Hanna Danko
Oleksandr Lukash
Iryna Morozova
Volodymyr Boiko
Oleksandr Yakovenko

  1. T.H. Shevchenko National University “Chernihiv Colehium” Hetman Polubotok Str. 53, 14013 Chernihiv, Ukraine

This page uses 'cookies'. Learn more