An Extension of Burzyński Hypothesis of Material Effort Accounting for the Third Invariant of Stress Tensor

Journal title

Archives of Metallurgy and Materials




No 2 June


Divisions of PAS

Nauki Techniczne


Institute of Metallurgy and Materials Science of Polish Academy of Sciences ; Commitee on Metallurgy of Polish Academy of Sciences




DOI: 10.2478/v10172-011-0054-4 ; ISSN 1733-3490


Archives of Metallurgy and Materials; 2011; No 2 June


Bardet J. (1990), Lode dependences for isotropic pressure sensitive materials, J Appl Mech, 57, 498, ; Burzyński W. (1928), Studium nad hipotezami wytężenia. ; Gillman J. (2003), Electronic basis of the strength of materials. ; Iyer S. (2003), Multiaxial constitutive model accounting for the strength-differential in Inconel 718, Int J Palst, 19, 2055, ; Lexcellent C. (2002), Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys, J MechPhys Sol, 50, 2717, ; Nalepka K. (2009), Modelling of the interactions In the copper crystal applied in the structure (1 1 1) Cu / (0 0 0 1) Al<sub>2</sub><i>O</i><sub>3</sub>, Arch Metall Mat, 54, 511. ; Pęcherski R. (2009), Burzyński yield condition vis-à-vis the related studies reported in the literature, Eng Trans, 56, 47. ; Podgórski J. (1984), Limit state condition and the dissipation function for isotropic materials, Arch Mech, 36, 323. ; Raniecki B. (2008), Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting SD effect, Acta Mech, 195, 81, ; Rychlewski J. (1983), CEIIINOSSSTTUV, Mathematical structure of elastic bodies [in Russian]. ; Rychlewski J. (1984), Elastic energy decomposition and limit criteria, Advances in Mechanics, 7, 51. ; Szeptyński P. (2011), Convexity condition for generalized yield surface of isotropic homogeneous bodies, Opuscu Engng Trans, 31. ; Życzkowski M. (1981), Combined loadings in the theory of plasticity.