Details
Title
Developing novel correlations for calculating natural gas thermodynamic propertiesJournal title
Chemical and Process EngineeringYearbook
2011Issue
No 4 DecemberAuthors
Keywords
natural gas ; thermodynamic properties ; novel correlations ; real time propertiesDivisions of PAS
Nauki TechniczneCoverage
435-452Publisher
Polish Academy of Sciences Committee of Chemical and Process EngineeringDate
2011Type
Artykuły / ArticlesIdentifier
DOI: 10.2478/v10176-011-0035-1 ; ISSN 0208-6425Source
Chemical and Process Engineering; 2011; No 4 December; 435-452References
AGA8-DC92 EoS, 1992, <i>Compressibility and super compressibility for natural gas and other hydrocarbon gases</i>, Transmission Measurement Committee Report No. 8, AGA Catalog No. XQ 1285, Arlington, VA. ; A. AlQuraishi Shokir (2009), Viscosity and density correlations for hydrocarbon gases and pure and impure gas mixtures, Pet. Sci. Technol, 27, 1674, doi.org/10.1080/10916460802456002 ; Azizi N. (2010), An efficient correlation for calculating compressibility factor of natural gases, J. Nat. Gas Chem, 19, 642, doi.org/10.1016/S1003-9953(09)60081-5 ; Bahadori A. (2009), A novel correlation for estimation of hydrate forming condition of natural gases, J. Nat. Gas Chem, 18, 453, doi.org/10.1016/S1003-9953(08)60143-7 ; Beggs H. (1973), Study of two-phase flow in inclined pipes, J. of Pet. Tech, 607, doi.org/10.2118/4007-PA ; Čapla L. (2002), Isothermal PVT measurements on gas hydrocarbon mixtures using a vibrating-tube apparatus, J. Chem. Thermodyn, 34, 657, doi.org/10.1006/jcht.2001.0935 ; Dranchuk P. (1975), Calculation of Z-factors for natural gases using equations of state, J. Can. Petrol. Tech, 14, doi.org/10.2118/75-03-03 ; Elsharkawy A. (2001), Compressibility factor for gas condensates, Energy Fuels, 15, 807, doi.org/10.1021/ef000216m ; Elsharkawy A. (2004), Efficient methods for calculations of compressibility, density and viscosity of natural gases, Fluid Phase Equilib, 218, 1, doi.org/10.1016/j.fluid.2003.02.003 ; Ernst G. (2001), Flow-calorimetric results for the massic heat capacity cp and the Joule-Thomson coefficient of CH4, of 0.85 CH4 + 0.15 C2H6, and of a mixture similar to natural gas, J. Chem. Thermodyn, 33, 601, doi.org/10.1006/jcht.2000.0740 ; Farzaneh-Gord M. (2010), Computing thermal properties of Natural gas by utilizing AGA8 Equation of State, Int. J. Chem. Eng. Appl, 1, 20. ; Farzaneh-Gord M. (2012), Numerical procedures for natural gas accurate thermodynamics properties calculation, Journal of Engineering Thermophysics, 20, 2. ; Guo X. (1997), Viscosity model based on equations of state for hydrocarbon liquids and gases, Fluid Phase Equilib, 139, 1-2, 405, doi.org/10.1016/S0378-3812(97)00156-8 ; Heidaryan E. (2010), New correlations to predict natural gas viscosity and compressibility factor, J. Pet. Sci. Eng, 73, 67, doi.org/10.1016/j.petrol.2010.05.008 ; Heidaryan E. (2010), A novel correlation approach for prediction of natural gas compressibility factor, J. Nat. Gas Chem, 19, 189, doi.org/10.1016/S1003-9953(09)60050-5 ; Hwang C. (1997), Burnett and pycnometric (P, V<sub>m</sub>T) measurements for natural gas mixtures, J. Chem. Thermodyn, 29, 1455, doi.org/10.1006/jcht.1997.0258 ; Kumar N., 2004. <i>Compressibility factor for natural and sour reservoir gases by correlations and cubic equations of state</i>, MS thesis, Texas Tech University, Lubbock, Tex, USA, 14-15, 23. ; Londono F. (2002), Simplified correlations for hydrocarbon gas viscosity and gas density validation and correlation behavior using a large scale database, null, doi.org/10.2118/75721-MS ; Marić I. (2005), The Joule-Thomson effect in natural gas flow-rate measurements, Flow Meas. Instrum, 16, 387, doi.org/10.1016/j.flowmeasinst.2005.04.006 ; Marić I. (2007), A procedure for the calculation of the natural gas molar heat capacity, the isentropic exponent, and the Joule-Thomson coefficient, Flow Meas. Instrum, 18, 18, doi.org/10.1016/j.flowmeasinst.2006.12.001 ; Marić I. (2005), Calculation of natural gas isentropic exponent, Flow Meas. Instrum, 16, 13, doi.org/10.1016/j.flowmeasinst.2004.11.003 ; McElroy P. (1989), Compression-factor measurements on methane, carbon dioxide, and (methane+carbon dioxide) using a weighing method, J. Chem. Thermodyn, 21, 1287, doi.org/10.1016/0021-9614(89)90117-1 ; Najim AM., 1995. <i>Evaluations of Correlations for Natural Gas Compressibility Factors</i>, MS thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, 6-9. ; Patil P. (2007), Accurate density measurements for a 91% methane natural gas-like mixture, J. Chem. Thermodyn, 39, 1157, doi.org/10.1016/j.jct.2007.01.002 ; Setzmann U. (1991), A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa, J. Phys. Chem. Ref. Data, 20, 1061, doi.org/10.1063/1.555898 ; Staby A. (1991), Measurement of the volumetric properties of a nitrogen-methane-ethane mixture at 275, 310, and 345 K at pressures to 60 MPa, J. Chem. Eng. Data, 36, 09, doi.org/10.1021/je00001a026 ; Standing M. (1942), Density of natural gases, Trans. AIME, 146, 140, doi.org/10.2118/942140-G ; Yarborough L. (1974), How to Solve Equation of State for Z-factors?, Oil & Gas J, 86.Editorial Board
Editorial Board
Ali Mesbach, UC Berkeley, USA
Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland
Anna Trusek, Wrocław University of Science and Technology, Poland
Bettina Muster-Slawitsch, AAE Intec, Austria
Daria Camilla Boffito, Polytechnique Montreal, Canada
Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland
Dorota Antos, Rzeszów University of Technology, Poland
Evgeny Rebrov, University of Warwick, UK
Georgios Stefanidis, National Technical University of Athens, Greece
Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland
Johan Tinge, Fibrant B.V., The Netherlands
Katarzyna Bizon, Cracow University of Technology, Poland
Katarzyna Szymańska, Silesian University of Technology, Poland
Marcin Bizukojć, Łódź University of Technology, Poland
Marek Ochowiak, Poznań University of Technology, Poland
Mirko Skiborowski, Hamburg University of Technology, Germany
Nikola Nikacevic, University of Belgrade, Serbia
Rafał Rakoczy, West Pomeranian University of Technology, Poland
Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong
Tom van Gerven, KU Leuven, Belgium
Tomasz Sosnowski, Warsaw University of Technology, Poland