Details

Title

Modelling of NO adsorption in fixed bed on activated carbon

Journal title

Chemical and Process Engineering

Yearbook

2011

Numer

No 4 December

Authors

Keywords

adsorption ; activated carbon ; nitric oxide ; linear driving force model ; mass transfer coefficient

Divisions of PAS

Nauki Techniczne

Coverage

367-377

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Date

2011

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10176-011-0029-z ; ISSN 0208-6425

Source

Chemical and Process Engineering; 2011; No 4 December; 367-377

References

Amanullah Md. (1999), Modeling and simulation of biofilter, Ind. Eng. Chem. Res, 38, 2765, doi.org/10.1021/ie9807708 ; Amanullah Md. (2000), Equilibrium Kinetics, and Column Dynamics of Methyl Ethyl Ketone Biodegradation, Ind. Eng. Chem. Res, 39, 3387, doi.org/10.1021/ie000265m ; Babu B.V., Gupta S., 2005. Modeling and simulation of fixed bed adsorption column: effect of velocity variation. Retrieved 2005, from <a target="_blank" href='http://discovery.bits-pilani.ac.in/~bvbabu/JET_Ads_imanager_2005.pdf'>http://discovery.bits-pilani.ac.in/~bvbabu/JET_Ads_imanager_2005.pdf</a> ; Bird R. (1960), Transport Phenomena, 532. ; Dantas T. (2011), Carbon dioxide-nitrogen separation through adsorption on activated caron in a fixed bed, Chem. Eng. J, 169, 11, doi.org/10.1016/j.cej.2010.08.026 ; Foumeny E. (1991), Predicive characterization of mean voidage in packed beds, Heat Recovery Syst. CHP, 11, 2/3, 127, doi.org/10.1016/0890-4332(91)90126-O ; Gómez-García M. (2005), Pollution by nitrogen oxides: an approach to NOx abatement by using sorbing catalytic materials, Environ. Int, 31, 445, doi.org/10.1016/j.envint.2004.09.006 ; Gupta A. (2002), Breakthrough analysis for adsorption of sutur-dioxide over zeolites, Chem. Eng. Process, 43, 9, doi.org/10.1016/S0255-2701(02)00213-1 ; Herčík M. (2004), Environmental protection and legislation. ; Holdich R. (2002), Fundamentals of Particle Technology. ; Levenspiel O. (1979), The Chemical Reactor Omnibook. ; Murillo R. (2004), Adsorption of phenanthrene on activated carbons: Breakthrough curve modelling, Carbon, 42, 2009, doi.org/10.1016/j.carbon.2004.04.001 ; Mutlu M. (1998), Determination of effective mass transfer coefficient (K<sub>c</sub>) of Patulin adsorption on activated carbon packed bed columns with recycling, J. Food Eng, 35, 259, doi.org/10.1016/S0260-8774(98)00914-5 ; Ruthven D. (1984), Principles of adsorption and adsorption processes, 206. ; Sircar S. (2000), Why does the linear driving force model for adsorption kinetics work?, Adsorption, 6, 137, doi.org/10.1023/A:1008965317983 ; Šrámek M. (2005), Modelling and simulation of adsorption in fixed bed, null. ; Sumathi S. (2010), Adsorption isotherm models and properties of SO<sub>2</sub>and NO removal by palm shell activated carbon supported with cerium (Ce/PSAC), Chem. Eng. J, 162, 194, doi.org/10.1016/j.cej.2010.05.028 ; Tang D. (2004), Axial dispersion and wall effects in narrow fixed bed reactors: A comparative study based on RTD and NMR measurements, Chem. Eng. Technol, 27, 8, 866, doi.org/10.1002/ceat.200402076 ; Tantet J. (1995), Breakthrough study of adsorption and separation of sulfur dioxide from wet gas using hydrophobic zeolites, Gas. Sep. Purif, 9, 3, 213, doi.org/10.1016/0950-4214(95)98229-E ; Thomas W. (1998), Adsorption technology and design. ; Zhang W. (2008), Study of NO adsorption on activated carbons, Appl. Catal. B, 83, 63, doi.org/10.1016/j.apcatb.2008.02.003 ; Zhu J. (2005), Experimental investigation of adsorption of NO and SO<sub>2</sub>on modified activated carbon sorbent from flue gases, Energy Convers. Manage, 46, 2173, doi.org/10.1016/j.enconman.2004.10.011

Editorial Board

Editorial Board

Dorota Antos, Rzeszów University of Technology, Poland

Katarzyna Bizon, Cracow University of Technology, Poland

Tomasz Ciach, Warsaw University of Technology, Poland

Magdalena Cudak, West Pomeranian University of Technology, Szczecin, Poland

Grzegorz Dzido, Silesian University of Technology, Poland

Marek Dziubiński, Lodz University of Technology, Poland

Leon Gradoń, Warsaw University of Technology, Poland

Andrzej Górak, TU Dortmund, Germany

Andrzej Heim, Lodz University of Technology, Poland

Marek Henczka, Warsaw University of Technology, Poland

Andrzej Jarzębski, Silesian University of Technology, Poland

Zdzisław Jaworski, West Pomeranian University of Technology, Szczecin, Poland

Władysław Kamiński, Poland

Bożenna Kawalec-Pietrenko, Poland

Stanisław Ledakowicz, Lodz University of Technology, Poland

Łukasz Makowski, Warsaw University of Technology, Poland

Eugeniusz Molga, Warsaw University of Technology, Poland

Andrzej Noworyta, Wrocław University of Science and Technology, Poland

Roman Petrus, Rzeszów University of Technology, Poland

Ryszard Pohorecki, Warsaw University of Technology, Poland

Rafał Rakoczy, West Pomeranian University of Technology, Szczecin, Poland

Andrzej Sobkowiak, Rzeszów University of Technology, Poland

Tomasz Sosnowski, Warsaw University of Technology, Poland

Anna Trusek, Wrocław University of Science and Technology, Poland

Kazimiera Wilk, Wrocław University of Science and Technology, Poland

Ireneusz Zbiciński, Lodz University of Technology, Poland


×