Details

Title

Modelling of fluidized bed biomass gasification in the quasi-equilibrium regime for preliminary performance studies of energy conversion plants

Journal title

Chemical and Process Engineering

Yearbook

2011

Numer

No 2 June

Authors

Keywords

biomass gasification ; fluidized beds ; thermodynamic equilibrium

Divisions of PAS

Nauki Techniczne

Coverage

73-89

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Date

2011

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10176-011-0007-5 ; ISSN 0208-6425

Source

Chemical and Process Engineering; 2011; No 2 June; 73-89

References

Asadullah M. (2003), Demonstration of real biomass gasification drastically promoted by effective catalyst, Appl. Catal. A: Gen, 246, 103, doi.org/10.1016/S0926-860X(03)00047-4 ; Bolhàr-Nordenkampf M. (2002a), Biomass CHP Plant Güssing - using gasification for power generation, null. ; Bolhàr-Nordenkampf M. (2002b), Scale-up of a 100 kWth pilot FICFB-gasifier to a 8 MWth FICFB-gasifier demonstration plant in Güssing (Austria), null. ; Brown D. (2009), Thermo-economic analysis for the optimal conceptual design of biomass gasification energy conversion systems, Appl. Therm. Eng, 29, 2137, doi.org/10.1016/j.applthermaleng.2007.06.021 ; Buragohain B. (2010), Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer-Tropsch synthesis, Energy, 35, 2557, doi.org/10.1016/j.energy.2010.03.003 ; Corella J. (1998), Biomass gasification with air in fluidized bed: Reforming of the gas composition with commercial steam reforming catalysts, Ind. Eng. Chem. Res, 37, 4617, doi.org/10.1021/ie980254h ; Corella J. (2006), Calculation of the conditions to get less than 2 g tar/m<sub>n</sub><sup>3</sup> in a fluidized bed biomass gasifier, Fuel Process. Technol, 87, 841, doi.org/10.1016/j.fuproc.2006.05.002 ; Delft University of Technology, 1980-2006. <i>Cycle-Tempo 5.0. A program for thermodynamic modeling and optimisation of energy conversion systems</i> ; De Jong W., 2005. <i>Nitrogen compounds in pressurised fluidised bed gasification of biomass and fossil fuels</i>. PhD thesis, TU Delft, Optima Grafische Communicatie, Rotterdam (available at: <a target="_blank" href='http://repository.tudelft.nl/'>http://repository.tudelft.nl/</a> ; M. De Souza-Santos (2004), Solid fuels combustion and gasification. Modeling, simulation, and equipment operation, doi.org/10.1201/9780203027295 ; Fercher E. (1998), Two years experience with the FICFB-gasification process, null. ; Gil J. (1999), Biomass gasification in atmospheric and bubbling fluidized bed: Effect of the type of gasifying agent on the product distribution, Biomass Bioenergy, 17, 389, doi.org/10.1016/S0961-9534(99)00055-0 ; Gòmez-Barea A. (2010), Modeling of biomass gasification in fluidized bed, Prog. Energy Combustion Sci, 36, 444, doi.org/10.1016/j.pecs.2009.12.002 ; Hofbauer H. (1997), Developments in thermochemical biomass conversion, 2, 1016, doi.org/10.1007/978-94-009-1559-6_82 ; Kalina J. (2010), Retrofitting of municipal coal fired heating plant with integrated biomass gasification gas turbine based cogeneration block, Energy Convers. Management, 51, 1085, doi.org/10.1016/j.enconman.2009.12.014 ; Kirov N. (1965), Specific heats and total heat contents of coals and related materials at elevated temperatures, BCURA Monthly Bulletin, 29, 33. ; Klimantos P. (2009), Air-blown biomass gasification combined cycles (BGCC): System analysis and economic assessment, Energy, 34, 708, doi.org/10.1016/j.energy.2008.04.009 ; Kurkela E. (2009), Fluidized-bed gasification of biomass for syngas applications: Comparison of gasification process alternatives, null. ; Li X. (2004), Biomass gasification in a circulating fluidized bed, Biomass and Bioenergy, 26, 171, doi.org/10.1016/S0961-9534(03)00084-9 ; Mevissen N. (2009), Thermodynamics of autothermal wood gasification, Environ. Prog. Sustain. Energy, 28, 3, 347, doi.org/10.1002/ep.10393 ; Miccio F. (1999), Generation and conversion of carbonaceous fine particles during bubbling fluidised bed gasification of a biomass fuel, Fuel, 78, 1473, doi.org/10.1016/S0016-2361(99)00044-7 ; Milne T. (1998), Biomass gasifier "Tars": Their nature, formation, and conversion, doi.org/10.2172/3726 ; Narváez I. (1996), Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas, Ind. Eng. Chem. Res, 35, 2110, doi.org/10.1021/ie9507540 ; Pfeifer C. (2004), Hydrogen-rich gas production with a catalytic dual fluidised bed biomass gasifier, null. ; Prins M. (2007), From coal to biomass gasification: Comparison of thermodynamic efficiency, Energy, 32, 1248, doi.org/10.1016/j.energy.2006.07.017 ; Richard N., Thunman H., 2002. <i>General equations for biomass properties</i>. Project report. (available at: <a target="_blank" href='http://www.unece.lsu.edu/biofuels/presentations.htm'>http://www.unece.lsu.edu/biofuels/presentations.htm</a> ; Schuster G. (2001), Biomass steam gasification - an extensive parametric study, Bioresour. Technol, 77, 71, doi.org/10.1016/S0960-8524(00)00115-2 ; Thunman H. (2001), Composition of volatile gases and thermochemical properties of wood for modeling of fixed or fluidized beds, Energy Fuels, 15, 1488, doi.org/10.1021/ef010097q ; A. Van der Drift (2001), Ten residual biomass fuels for circulating fluidized-bed gasification, Biomass Bioenergy, 20, 45, doi.org/10.1016/S0961-9534(00)00045-3 ; C. Van der Meijden (2010), The production of synthetic natural gas (SNG): A comparison of three wood gasification systems for energy balance and overall efficiency, Biomass Bioenergy, 34, 302, doi.org/10.1016/j.biombioe.2009.11.001 ; Wu C. (2008), Design and operation of A 5.5 MWe biomass integrated gasification combined cycle demonstration plant, Energy Fuels, 22, 4259, doi.org/10.1021/ef8004042

Editorial Board

Editorial Board

Dorota Antos, Rzeszów University of Technology, Poland

Katarzyna Bizon, Cracow University of Technology, Poland

Tomasz Ciach, Warsaw University of Technology, Poland

Magdalena Cudak, West Pomeranian University of Technology, Szczecin, Poland

Grzegorz Dzido, Silesian University of Technology, Poland

Marek Dziubiński, Lodz University of Technology, Poland

Leon Gradoń, Warsaw University of Technology, Poland

Andrzej Górak, TU Dortmund, Germany

Andrzej Heim, Lodz University of Technology, Poland

Marek Henczka, Warsaw University of Technology, Poland

Andrzej Jarzębski, Silesian University of Technology, Poland

Zdzisław Jaworski, West Pomeranian University of Technology, Szczecin, Poland

Władysław Kamiński, Poland

Bożenna Kawalec-Pietrenko, Poland

Stanisław Ledakowicz, Lodz University of Technology, Poland

Łukasz Makowski, Warsaw University of Technology, Poland

Eugeniusz Molga, Warsaw University of Technology, Poland

Andrzej Noworyta, Wrocław University of Science and Technology, Poland

Roman Petrus, Rzeszów University of Technology, Poland

Ryszard Pohorecki, Warsaw University of Technology, Poland

Rafał Rakoczy, West Pomeranian University of Technology, Szczecin, Poland

Andrzej Sobkowiak, Rzeszów University of Technology, Poland

Tomasz Sosnowski, Warsaw University of Technology, Poland

Anna Trusek, Wrocław University of Science and Technology, Poland

Kazimiera Wilk, Wrocław University of Science and Technology, Poland

Ireneusz Zbiciński, Lodz University of Technology, Poland


×