The influence of hygienisation of sewage sludge on the process of pyrolysis

Journal title

Chemical and Process Engineering




No 1 March



pyrolysis ; sewage sludge ; pyrolytic gas ; lime

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences Committee of Chemical and Process Engineering




Artykuły / Articles


DOI: 10.2478/v10176-011-0005-7 ; ISSN 0208-6425


Chemical and Process Engineering; 2011; No 1 March; 57-68


Arabiourrutia M. (2007), Product distribution obtained in the pyrolysis of tyres in a conical spouted bed reactor, Chem. Eng. Sci, 62, 5271, ; Barbooti M. (2004), Optimization of pyrolysis conditions of scrap tires under inert gas atmosphere, J Anal. Appl. Pyrol, 72, 165, ; Bellais M., 2007. <i>Modelling of the pyrolysis of large wood particles.</i> Ph.D Thesis, KTH Chemical Science and Engineering, Stockholm. ; Boxiong S. (2006), Pyrolysis of waste tyres: The influence of USY catalyst/tyre ratio on products, J Anal. Appl. Pyrol, 78, 243, ; Caballero J. (1997), Characterization of sewage sludges by primary and secondary pyrolysis, J Anal. Appl. Pyrol, 40-41, 433, ; Conesa J. (1998), Evolution of gases in the primary pyrolysis of different sewage sludges, Thermochim. Acta, 313, 63, ; Couhert C. (2009), Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin?, Fuel, 88, 408, ; C. Di Blasi (2008), Modelling chemical and physical processes of wood and biomass pyrolysis, Energy Comb. Sci, 34, 47, ; Domínguez A. (2006), Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature, J Anal. Appl. Pyrol, 77, 127, ; Filip Z. (1988), Comparison of salts marsh humic acid with humic-like substancs from the indigenous plant species Spartina Alterniflora (loisel), Sci. Total Environ, 74, 157, ; Fonts I. (2009), Study of the pyrolysis liquids obtained from different sewage sludge, J Anal. Appl. Pyrol, 85, 184, ; Fullana A. (2003), Pyrolysis of sewage sludge: nitrogenated compounds and pretreatment effects, J Anal. Appl. Pyrol, 68-69, 561, ; Fytili D. (2008), Utilization of sewage sludge in EU application of old and new methods-A review, Ren. Sus. Ener. Rev, 12, 116, ; Gasco G. (2007), The effect of acid treatment on the pyrolysis behavior of sewage sludges, J Anal. Appl. Pyrol, 80, 496, ; Gascó G. (2005), The influence of organic matter on sewage sludge pyrolysis, J Anal. Appl. Pyrol, 74, 413, ; Gondar D. (2005), Characterization and acid-base properties of fulvic and humic acids isolated from two horizons of an ombrotropic peat bog, Geoderma, 126, 367, ; Haykiri-Acma H. (2010), Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis, Fuel Process. Tech, 91, 759, ; Hossain M. (2009), Thermal characterisation of the products of wastewater sludge pyrolysis, J Anal. Appl. Pyrol, 85, 442, ; Chen Y. (1977), Information provided on humic substances by E4/E6 ratios, Soil Sci. Soc. Am. J, 41, 352, ; Inguanzo M. (2002), On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions, J Anal. Appl. Pyrol, 63, 209, ; Islam M. (2008), Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties, Fuel, 87, 3112, ; Lin K.-H. (2009), Pyrolytic product characteristics of biosludge from the wastewater treatment plant of a petrochemical industry, J Hazard. Mater, 171, 208, ; Liu Q. (2004), Effect of inorganic matter on reactivity and kinetics of coal pyrolysis, Fuel, 83, 713, ; Menéndez J. (2004), Microwave pyrolysis of sewage sludge: analysis of the gas fraction, J Anal. Appl. Pyrol, 71, 657, ; Méndez A. (2005), Preparation of carbon-based adsorbents from pyrolysis and air activation of sewage sludges, Chem. Eng. J, 108, 169, ; Mészáros E. (2007), TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia, J Anal. Appl. Pyrol, 79, 61, ; Patwardhan P. (2010), Influence of inorganic salts on the primary pyrolysis products of cellulose, Biores. Tech, 101, 4646, ; Raclavská H. (2007), Technology for processing and utilization of sludge from municipal wastewater treatment plant. ; Radović L. (1983), Effect of lignite pyrolysis conditions on calcium oxide dispersion and subsequent char reactivity, Fuel, 62, 209, ; Raveendran K. (1995), Influence of mineral matter on biomass pyrolysis characteristics, Fuel, 74, 1812, ; Sánchez M. (2009), Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge, Biom. Bioener, 33, 933, ; Sato S. (2003), Hydrogen production from heavy oil in the presence of calcium hydroxide, Fuel, 82, 561, ; Swift R. (1996), Methods of soil analysis. Part 3. Chemical methods, 1018. ; Warman P. (2005), Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: yields and N, P and K content of crops and soils, Biores. Tech, 96, 955, ; Werle S. (2010), A review of methods for the thermal utilization of sewage sludge: The Polish perspective, Renew. Energ, 35, 1914, ; Werther J. (1999), Sewage sludge combustion, Prog. Energy Comb. Sci, 25, 55, ; Williams P. (2007), Analysis of product from the pyrolysis and liquefaction of single plastics and waste plastic mixtures, Resour. Conservat. Recycl, 51, 754,

Editorial Board

Editorial Board

Ali Mesbach, UC Berkeley, USA

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland

Anna Trusek, Wrocław University of Science and Technology, Poland

Bettina Muster-Slawitsch, AAE Intec, Austria

Daria Camilla Boffito, Polytechnique Montreal, Canada

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland

Dorota Antos, Rzeszów University of Technology, Poland

Evgeny Rebrov, University of Warwick, UK

Georgios Stefanidis, National Technical University of Athens, Greece

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland

Johan Tinge, Fibrant B.V., The Netherlands

Katarzyna Bizon, Cracow University of Technology, Poland

Katarzyna Szymańska, Silesian University of Technology, Poland

Marcin Bizukojć, Łódź University of Technology, Poland

Marek Ochowiak, Poznań University of Technology, Poland

Mirko Skiborowski, Hamburg University of Technology, Germany

Nikola Nikacevic, University of Belgrade, Serbia

Rafał Rakoczy, West Pomeranian University of Technology, Poland

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong

Tom van Gerven, KU Leuven, Belgium

Tomasz Sosnowski, Warsaw University of Technology, Poland