Assessment of Deformation Properties of Coal Measure Sandstones Through Regression Analyses and Artificial Neural Networks

Journal title

Archives of Mining Sciences




vol. 66


No 4


Köken, Ekin : Abdullah Gul University, Nanotechnology Engineering Department, 38170, Kayseri, Turkey



sandstone ; Zonguldak ; deformation properties ; regression analysis ; artificial neural network

Divisions of PAS

Nauki Techniczne




Committee of Mining PAS


[1] K . Zorlu, C. Gökçeoglu, F. Ocakoglu, H.A. Nefeslioglu, S. Acikalin, Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng. Geol. 96, 141-158 (2008). DOI :
[2] N . Ceryan, Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks. J. African Earth. Sci. 100, 634-644 (2014). DOI :
[3] A. Shakoor, R.E. Bonelli, Relationship between petrographic characteristics, engineering index properties, and mechanical properties of selected sandstones. Environ. Eng. Geosci. 28, 55-71 (1991). DOI :
[4] A. Ersoy, M.D. Waller, Textural characterisation of rocks. Eng. Geol. 39, 123-136 (1995). DOI :
[5] F.G. Bell, P. Lindsay, The petrographic and geomechanical properties of some sandstones from the Newspaper Member of the Natal Group near Durban, South Africa. Eng. Geol. 53, 57-81 (1999). DOI :
[6] R. Prikryl, Assessment of rock geomechanical quality by quantitative rock fabric coefficients: limitations and possible source of misinterpretations. Eng. Geol. 87, 149-162 2006. DOI :
[7] J.S. Coggan, D. Stead, J.H. Howe, C.I Faulks, Mineralogical controls on the engineering behavior of hydrothermally altered granites under uniaxial compression. Eng. Geol. 160, 89-102 (2013). DOI :
[8] C .A. Ozturk, E. Nasuf, S. Kahraman, Estimation of rock strength from quantitative assessment of rock texture. Journal of the Southern African Institute of Mining and Metallurgy 114 (6), 471-480 (2014).
[9] E. Ali, W. Guang, A. Ibrahim, Microfabrics-Based Approach to Predict Uniaxial Compressive Strength of Selected Amphibolites Schists Using Fuzzy Inference and Linear Multiple Regression Techniques, Environ. Eng. Geosci. 21 (3), 235-245 (2015). DOI:
[10] X.A. Cabria, Effects of weathering in the rock and rock mass properties and the influence of salts in the coastal roadcuts in Saint Vincent and Dominica. Master Thesis, Twente University, (2015).
[11] N .Q.A.M. Yusof, H. Zabidi, Correlation of Mineralogical and Textural Characteristics with Engineering Properties of Granitic Rock from Hulu Langat, Selangor. Procedia Chemistry 19, 975-980 (2016). DOI :
[12] E. Köken A. Özarslan, G. Bacak, Weathering effects on physical properties and material behavior of granodiorite rocks. In: Rock Mechanics and Rock Engineering – From the past to the future Ulusay et al. (Eds), ISRM International Symposium, EUROCK 2016, 331-336 (2016).
[13] T.K. Koca, M.Y. Koca, Classification of weathered andesitic rock materials from the İzmir Subway line on the basis of strength and deformation. Bull. Eng. Geol. Environ. 78, 3575-3592 (2019). DOI :
[14] M.N. Bidgoli, Z. Zhao, L. Jing, Numerical evaluation of strength and deformability of fractured rocks. Rock Mech. and Geotech. Eng. 5, 419-430 (2013). DOI:
[15] H. Xu, W. Zhou, R. Xie, L. Da, C. Xiao, Y. Shan, H. Zhang, Characterization of Rock Mechanical Properties Using Lab Tests and Numerical Interpretation Model of Well Logs. Math. Prob. Eng. 5967159, (2016). DOI :
[16] J. Shu, L. Jiang, P. Kong, Q. Wang, Numerical Analysis of the Mechanical Behaviors of Various Jointed Rocks under Uniaxial Tension Loading. Appl. Sci. 9, 1824 (2019). DOI:
[17] P. Davy, C. Darcel, R. Le Goc, D. Mas Ivars, Elastic Properties of Fractured Rock Masses With Frictional Properties and Power Law Fracture Size Distributions. J. Geophys. Res. 123 (8), 6521-6539 (2018). DOI :
[18] M. Babaeian, M. Ataei, F. Sereshki, F. Sotoudeh, A new framework for evaluation of rock fragmentation in open pit mines. Rock Mech. Geotech. Eng. 11 (2), 325-336 (2019). DOI :
[19] A.A. Mahmoud, S. Elkatatny, D.A. Shehri, Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations. Sustainability 12, 1880 (2020). DOI:
[20] D . Lv, Z. Li, J. Chen, H. Liu, J. Guo, L. Shang, Characteristics of the Permian coal-formed gas sandstone reservoirs in Bohai Bay Basin and the adjacent areas. North China, Petrol. Sci. Eng. 78 (2), 516-528, (2011). DOI :
[21] A. Fan, R. Yang, N. Lenhardt, M. Wang, Z. Han, J. Li, Y. Li, Z. Zhao, Cementation and porosity evolution of tight sandstone reservoirs in the Permian Sulige gasfield, Ordos Basin (central China). Marine Petrol. Geol. 103, 276-293 (2019). DOI:
[22] P. Tan, Y. Jin, L. Yuan, et al., Understanding hydraulic fracture propagation behavior in tight sandstone – coal interbedded formations: an experimental investigation. Pet. Sci. 16, 148-160 (2019). DOI :
[23] D .G. Roy, T.N. Singh, Predicting deformational properties of Indian coal: Soft computing and regression analysis approach. Measurement 149, 106975 (2020). DOI:
[24] R. Koch, R. Sobott, Sandsteine: Entstehung, Eigenschaften, Verwitterung, Konservierung, Restaurierung. In: Siegesmund, Snethlage (eds) Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 59, 145-174 (2008).
[25] J. Rüdrich, T. Bartelsen, R. Dohrmann, S. Siegesmund, Moisture expansion as a deterioration factor for sandstone used in buildings. Environ. Earth Sci. 63, 1545-1564 (2010). DOI:
[26] F.J. Pettijohn, Sand and sandstone, Springer-Verlag Berlin, (1973). e-ISBN: 978-1-4615-9974-6
[27] J.R.L Allen, Petrology, origin and deposition of the highest Lower Old Red sandstone of Shropshire, England. J. Sedimen. Res. 32 (4), 657-697 (1962).
[28] D .F. Howarth, J.C. Rowlands, Quantitative assessment of rock texture and correlation with drillability and strength properties. Rock Mech. Rock Eng. 20, 57-85 (1987). DOI:
[29] A. Azzoni, F. Bailo, E. Rondena, et al., Assessment of texture coefficient for different rock types and correlation with uniaxial compressive strength and rock weathering. Rock. Mech. Rock. Eng. 29, 39-46 (1996). DOI :
[30] M. Alber, S. Kahraman, Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient. Rock Mech. Rock. Eng. 42, 117-127 (2009). DOI :
[31] F. Arıkan R. Ulusay, N. Aydın, Characterization of weathered acidic volcanic rocks and a weathering classification based on a rating system. Bull. Eng. Geol. Environ. 66, 415-430 (2007). DOI :
[32] Ö. Ündül, A. Tuğrul, On the variations of geoengineering properties of dunites and diorites related to weathering. Environ. Earth Sci. 75, 1326 (2016). DOI:
[33] E. Köken, S. Top, A. Özarslan, Assessment of Rock Aggregate Quality Through the Analytic Hierarchy Process (AHP). Geotech. Geol. Eng. 38, 5075-5096 (2020). DOI:
[34] R.H.C. Wong, K.T. Chau, P. Wang, Microcracking and grain size effect in Yuen Long Marbles. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 33 (5), 479-485 (1996). DOI:
[35] Y.H. Hatzor, V. Palchik, The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites. Int. J .Rock Mech. Min. Sci. 34 (5), 805-816 (1997). DOI :
[36] A. Tugrul, I.H. Zarif, Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 51 (4), 303-317 (1999). DOI :
[37] E. Eberhardt, B. Stimpson, D. Stead, Effects of grain size on the initiation and propagation thresholds of stressinduced brittle fractures. Rock Mech. Rock Eng. 32, 81-99 (1999). DOI :
[38] R. Přikryl, Some microstructural aspects of strength variation in rocks. Int. J. Rock Mech. Min. Sci. 38 (5), 671-682 (2001). DOI:
[39] M. Cai, P.K. Kaiser, Y. Tasaka, T. Maejima, H. Morioka, M. Minami, Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int. J. Rock Mech. Min. Sci. 41 (5), 833-847 (2004). DOI:
[40] M. Nicksiar, C.D. Martin, Crack initiation stress in low porosity crystalline and sedimentary rocks. Eng. Geol. 154, 64-76 (2013). DOI:
[41] E. Köken, Investigations on Fracture Evolution of Coal Measure Sandstones from Mineralogical and Textural Points of View. Indian Geotech. J. 50, 1024-1040 (2020). DOI:
[42] N . Yesiloglu-Gultekin, E.A. Sezer, C. Gokceoglu, H. Bayhan, An application of adaptive neuro fuzzy inference system for estimating the uniaxial compressive strength of certain granitic rocks from their mineral contents. Expert Sys. App. 40 (3), 921-928 (2013). DOI:
[43] N .F. Hassan, O.A. Jimoh, S.A. Shehu, Z. Hareyani, The effect of mineralogical composition on strength and drillability of granitic rocks in Hulu Langat, Selangor Malaysia. Geotech. Geol. Eng. 37, 5499-5505 (2019). DOI :
[44] R.S. Tandon, V. Gupta, The control of mineral constituents and textural characteristics on the petrophysical & mechanical (PM) properties of different rocks of the Himalaya. Eng. Geol. 153, 125-143 (2013). DOI :
[45] M. Rӓisӓnen, Relationships between texture and mechanical properties of hybrid rocks from the Jaala-Iitti complex, southeastern Finland. Eng. Geol. 74, 197-211 (2004). DOI:
[46] E. Cantisani, C.A. Garzonio, M. Ricci, S. Vettori, Relationships between the petrographical, physical and mechanical properties of some Italian sandstones. Int. J. Rock Mech. Min. Sci. 60, 321-332 (2013). DOI :
[47] R. Ulusay, K. Tureli, M.H. Ider, Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Eng. Geol. 38 (1-2), 135-157 (1994). DOI:
[48] S. Kahraman, Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int. J. Rock Mech. Min. Sci. 38 (7), 981-994 (2001). DOI:
[49] G.R. Lashkaripour, Predicting mechanical properties of mudrock from index parameters. Bull. Eng. Geol. Environ. 61, 73-77 (2002). DOI:
[50] P.A. Hale, A. Shakoor, A Laboratory Investigation of the Effects of Cyclic Heating and Cooling, Wetting and Drying, and Freezing and Thawing on the Compressive Strength of Selected Sandstones. Environ. Eng. Geosci. 9 (2), 117-130 (2003). DOI:
[51] C . Gokceoglu, H. Sonmez, K. Zorlu, Estimating the uniaxial compressive strength of some clay bearing rocks selected from Turkey by nonlinear multivariable regression and rule-based fuzzy models. Expert Systems 26 (2), 176-190 (2009). DOI:
[52] M. Khandelwal, T.H. Singh, Correlating static properties of coal measures rocks with P-wave velocity. Int. J. Coal Geol. 79 (1-2), 55-60, (2009). DOI:
[53] S. Dehghan, G.H Sattari, S. Chehreh Chelgani, M.A. Aliabadi, Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Min. Sci. Tech. (China), 20 (1), 41-46, (2010). DOI:
[54] S. Yagiz, Correlation between slake durability and rock properties for some carbonate rocks. Bull. Eng. Geol. Environ. 70 (3), 377-383 (2011). DOI:
[55] T.N. Singh, A.K. Verma, Comparative analysis of intelligent algorithms to correlate strength and petrographic properties of some schistose rocks. Eng. Comput. 28, 1-12 (2012). DOI:
[56] M. Khandelwal, Correlating P-wave velocity with the physicomechanical properties of different rocks. Pure Appl. Geophys. 170, 507-514 (2013). DOI:
[57] R. Barzegar, M. Sattarpour, M.R. Nikudel, et al., Comparative evaluation of artificial intelligence models for prediction of uniaxial compressive strength of travertine rocks, Case study: Azarshahr area, NW Iran, Model. Earth Sys. Environ. 2, 76 (2016). DOI:
[58] A. Teymen, E.C. Mengüç, Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks. Int. J. Min. Sci. Tech. 30 (6), 785-797 (2020). DOI :
[59] M.L. Larrea, S.M. Castro, E.A. Bjerg, A software solution for point counting. Petrographic thin section analysis as a case study. Arab. J. Geosci. 7, 2981-2989 (2014). DOI:
[60] E. Köken, Size Reduction Characterization of Underground Mine Tailings: A Case Study on Sandstones. Nat. Resour. Res. 30, 867-887 (2021). DOI:
[61] E.F. McBride, A classification of common sandstones. J. Sediment. Petrol. 33 (3), 664-669, (1963). DOI :
[62] R.H. Dott, Wackes, greywacke and matrix: what approach to immature sandstone classification. J. Sedimen. Res. 34, 625-632 (1964).
[63] R.L. Folk, W.C. Ward, Brazos River bar, a study in the significance of grain size parameters. J. Sedimen. Petrol. 27 (1), 3-26 (1957). DOI:
[64] R.L. Folk, Petrology of sedimentary rocks. Austin: Hemphill Pub. (1981), ISBN: 0-914696-14-9.
[65] I SRM, The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006. In: Ulusay R, Hudson JA (eds) Suggested methods prepared by the commission on testing methods. (2007) International Society for Rock Mechanics (ISRM), (2007), Ankara, Turkey
[66] D .U. Deere, R.P. Miller, Engineering classification and index properties for intact rock. Technical Report Air Force Weapons Laboratory (Report No, AFWL-TR-65-116), 136-184, New Mexico, (1966).
[67] E. Yasar , Y. Erdoğan, Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int. J. Rock Mech Min. Sci. 41, 871-875 (2004). DOI :
[68] I . Yilmaz, G. Yuksek, Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN and ANFIS models. Int. J. Rock Mech. Min. Sci. 46, 803-810 (2009). DOI :
[69] Z.A. Moradian, M. Behnia, Predicting the Uniaxial Compressive Strength and Static Young’s Modulus of Intact Sedimentary Rocks Using the Ultrasonic Test. Int. J. Geomech. 9 (1), 14-19 (2009). DOI :
[70] G. Pappalardo, Correlation between P-wave velocity and physical-mechanical properties of intensely jointed dolostones, Peloritani Mounts, NE Sicily. Rock Mech. Rock Eng. 48, 1711-1721 (2015). DOI :
[71] H. Arman, S. Paramban, Correlating natural, dry, and saturated ultrasonic pulse velocities with the mechanical properties of rock for various sample diameters. Appl. Sci. 10, 9134 (2020). DOI :
[72] N . Sabatakakis, G. Koukis, G. Tsiambos, S. Papanakli, Index properties and strength variation controlled by microstructure for sedimentary rocks. Eng. Geol. 97, 80-90 (2008). DOI:
[73] R. Singh, A. Kainthola, T.N. Singh, Estimation of elastic constant of rocks using an ANFIS approach, Appl. Soft Comput. J. 12, 40-45 (2012). DOI:
[74] A.I. Lawal, M.A. Idris, An artificial neural network-based mathematical model for the prediction of blast-induced ground vibrations. Int. J. Environmen. Stud. 77 (2), 318-334, (2020). DOI :
[75] S.K. Das, Artificial neural networks in geotechnical engineering: modeling and application issues, Metaheuristics in water, geotechnical and transport engineering, 231-270 (2013).
[76] M. Heidari, G.R. Khanlari, A.A. Momeni, Prediction of Elastic Modulus of Intact Rocks Using Artificial Neural Networks and non-Linear Regression Methods. Australian J. Basic Appl. Sci. 4 (12), 5869-5879 (2010).
[77] D .J. Armaghani, E.T. Mohamad, E. Momeni, M.S. Narayanasamy, An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull. Eng. Geol. Environ. 74, 1301-1319 (2015). DOI:
[78] S. Yagiz, E.A. Sezer, C. Gokceoglu, Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. Int. J. Numer Anal. Methods Geomech. 36 (14), 1636-1650 (2012). DOI :
[79] S. Aboutaleb, M. Behnia, R. Bagherpour, B. Bluekian, Using non-destructive tests for estimating uniaxial compressive strength and static Young’s modulus of carbonate rocks via some modeling techniques. Bull. Eng. Geol. Environ. 77 (4), 1717-1728 (2018). DOI:
[80] A. Jamshidi, H. Zamanian, R. Zarei Sahamieh, The Effect of Density and Porosity on the Correlation Between Uniaxial Compressive Strength and P-wave Velocity. Rock Mech. Rock Eng. 51, 1279-1286 (2018). DOI :






DOI: 10.24425/ams.2021.139595