Conantokin G-induced changes in the chemical coding of dorsal root ganglion neurons supplying the porcine urinary bladder

Journal title

Polish Journal of Veterinary Sciences




No 1


Divisions of PAS

Nauki Biologiczne i Rolnicze


Polish Academy of Sciences Committee of Veterinary Sciences ; University of Warmia and Mazury in Olsztyn




DOI: 10.2478/v10181-011-0120-x ; ISSN 1505-1773


Polish Journal of Veterinary Sciences; 2012; No 1


Ahluwalia A. (1994), Characterization of the capsaicin-sensitive component of cyclophosphamide-induced inflammation in the rat urinary bladder, Br J Pharmacol, 111, 1017. ; Aley K. (1998), Nitric oxide signaling in pain and nociceptor sensitization in the rat, J Neurosci, 18, 7008. ; Barton M. (2004), The effect of CGX-1007 and CI-1041, novel NMDA receptor antagonists, on NMDA receptor-mediated EPSCs, Epilepsy Res, 59, 13, ; Birder L. (2001), Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells, Proc Natl Acad Sci USA, 98, 13396, ; Bossowska A. (2009), Distribution and neurochemical characterization of sensory dorsal root ganglia neurons supplying porcine urinary bladder, J Physiol Pharmacol, 60, 77. ; Bustos G. (1992), Regulation of excitatory amino acid release by N-methyl-D-aspartate receptors in rat striatum: in vivo microdialysis studies, Brain Res, 585, 105, ; Callsen-Cencic P. (1997), Expression of neuropeptides and nitric oxide synthase in neurons innervating the inflamed rat urinary bladder, J Auton Nerv Syst, 65, 33, ; Chen T. (2008), Modulation of NMDA receptors by intrathecal administration of the sensory neuron-specific receptor agonist BAM8-22, Neuropharmacology, 54, 796, ; Chien C. (2003), Substance P via NK1 receptor facilitates hyperactive bladder afferent signaling via action of ROS, Am J Physiol Renal Physiol, 284. ; Colvin L. (1997), The effect of a peripheral mononeuropathy on immunoreactive (ir)-galanin release in the spinal cord of the rat, Brain Res, 766, 259, ; Dickenson A. (1990), A cure for wind up: NMDA receptor antagonists as potential analgesics, Trends Pharmacol Sci, 11, 307, ; Dingledine R. (1999), The glutamate receptor ion channels, Pharmacol Rev, 51, 7. ; Duggan A. (1995), Afferent volley patterns and the spinal release of immunoreactive substance P in the dorsal horn of the anaesthetized spinal cat, Neuroscience, 65, 849, ; Fisher K. (2000), Targeting the N-methyl-D-aspartate receptor for chronic pain management. Preclinical animal studies, recent clinical experience and future research directions, J Pain Symptom Manage, 20, 358. ; Gonzalez-Cadavid N. (2000), Presence of NMDA receptor subunits in the male lower urogenital tract, J Androl, 21, 566. ; Hama A. (2009), Antinociceptive effects of the marine snail peptides conantokin-G and conotoxin MVIIA alone and in combination in rat models of pain, Neuropharmacology, 56, 556, ; Honda C. (1995), Differential distribution of calbindin-D28k and parvalbumin in somatic and visceral sensory neurons, Neuroscience, 68, 883, ; Ishizuka O. (1995), Facilitatory effect of pituitary adenylate cyclase activating polypeptide on micturition in normal, conscious rats, Neuroscience, 66, 1009, ; Kakizaki H. (1996), Role of spinal nitric oxide in the facilitation of the micturition reflex by bladder irritation, J Urol, 155, 355, ; Layer R. (2004), Conantokins: peptide antagonists of NMDA receptors, Curr Med Chem, 11, 3073. ; Li Y. (2005), An immunocytochemical study of calbindin-D28K in laminae I and II of the dorsal horn and spinal ganglia in the chicken with special reference to the relation to substance P-containing primary afferent neurons, Arch Histol Cytol, 68, 57, ; Liu H. (1997), NMDA-receptor regulation of substance P release from primary afferent nociceptors, Nature, 386, 721, ; Ma M. (2008), Mechanosensitive N-methyl-D-aspartate receptors contribute to sensory activation in the rat renal pelvis, Hypertension, 52, 938, ; Mabuchi T. (2003), Attenuation of neuropathic pain by the nociceptin/orphanin FQ antagonist JTC-801 is mediated by inhibition of nitric oxide production, Eur J Neurosci, 17, 1384, ; Malenka R. (1988), Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission, Science, 242, 81, ; Marvizon J. (2002), Two N-methyl-D-aspartate receptors in rat dorsal root ganglia with different subunit composition and localization, J Comp Neurol, 446, 325, ; Mersdorf A. (1992), Intrathecal administration of substance P in the rat: the effect on bladder and urethral sphincteric activity, Urology, 40, 87, ; Millan M. (1999), The induction of pain: an integrative review, Prog Neurobiol, 57, 1, ; Ng Y. (2004), Expression of glutamate receptors and calcium-binding proteins in the retina of streptozotocin-induced diabetic rats, Brain Res, 1018, 66, ; Ohsawa M. (2002), Modulation of nociceptive transmission by pituitary adenylate cyclase activating polypeptide in the spinal cord of the mouse, Pain, 100, 27, ; Olivera B. (1997), E. E. Just Lecture, 1996. Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology, Mol Biol Cell, 8, 2101. ; Olivera B. (2007), Diversity of the neurotoxic Conus peptides: a model for concerted pharmacological discovery, Mol Interv, 7, 251, ; Sandkuhler J. (1990), Spinal somatostatin superfusion in vivo affects activity of cat nociceptive dorsal horn neurons: comparison with spinal morphine, Neuroscience, 34, 565, ; Sato K. (1993), AMPA, KA and NMDA receptors are expressed in the rat DRG neurones, Neuroreport, 4, 1263, ; Than M. (2000), Systemic anti-inflammatory effect of somatostatin released from capsaicin-sensitive vagal and sciatic sensory fibres of the rat and guinea-pig, Eur J Pharmacol, 399, 251, ; Vaughan C. (1995), Urine storage mechanisms, Prog Neurobiol, 46, 215, ; Vizzard M. (2000), Up-regulation of pituitary adenylate cyclase-activating polypeptide in urinary bladder pathways after chronic cystitis, J Comp Neurol, 420, 335,<335::AID-CNE5>3.0.CO;2-# ; Vizzard M. (2001), Alterations in neuropeptide expression in lumbosacral bladder pathways following chronic cystitis, J Chem Neuroanat, 21, 125, ; Xiao C. (2008), NR2B-selective conantokin peptide inhibitors of the NMDA receptor display enhanced antinociceptive properties compared to non-selective conantokins, Neuropeptides, 42, 601, ; Zvarova K. (2004), Changes in galanin immunoreactivity in rat lumbosacral spinal cord and dorsal root ganglia after spinal cord injury, J Comp Neurol, 475, 590,