The presence of CD25 on bovine WC1+ γδ T cells is positively correlated with their production of IL-10 and TGF-β, but not IFN-γ

Journal title

Polish Journal of Veterinary Sciences




No 1


Divisions of PAS

Nauki Biologiczne i Rolnicze


Polish Academy of Sciences Committee of Veterinary Sciences ; University of Warmia and Mazury in Olsztyn




DOI: 10.2478/v10181-011-0108-6 ; ISSN 1505-1773


Polish Journal of Veterinary Sciences; 2012; No 1


Amadori M. (1995), Role of a distinct population of bovine γδ T cells in the immune response to viral agents, Viral Immunol, 8, 81, ; Brown W. (1994), Functional and phenotypic characterization of WC1<sup>+</sup> γδ T-cells isolated from Babesia bovis-stimulated T cell lines, Cell Immunol, 153, 9, ; Bucy R. (1989), Tissue localization and CD8 accessory molecule expression of T γδ cells in humans, J Immunol, 142, 3045. ; Collins R. (1996), Bovine γδ TcR<sup>+</sup> T lymphocytes are stimulated to proliferate by autologous Theileria annulata-infected cells in the presence of interleukin-2, Scand J Immunol, 44, 444, ; Collins R. (1998), γδ T cells present antigen to CD4<sup>+</sup> αβ T cells, J Leukoc Biol, 63, 707. ; Fikri Y. (2001), Purified bovine WC1<sup>+</sup> γδ T lymphocytes are activated by staphylococcal enterotoxins and toxic shock syndrome toxin-1 superantigens: proliferation response, TCR Vγ profile and cytokines expression, Immunol Lett, 77, 87, ; Hanby-Flarida M. (1996), Modulation of WC1, a lineage-specific cell surface molecule of γδ T cells augments cellular proliferation, Immunology, 88, 116, ; Hedges J. (2003), Differential mRNA expression in circulating γδ T lymphocyte subsets defines unique tissue-specific functions, J Leukoc Biol, 73, 306, ; Hoek A. (2009), Subpopulations of bovine WC1<sup>+</sup> γδ T cells rather than CD4<sup>+</sup>CD25<sup>high</sup>Foxp3<sup>+</sup> T cells act as immune regulatory cells ex vivo, Vet Res, 40, 06, ; Itohara S. (1989), Monoclonal antibodies specific to native murine T-cell receptor γδ: analysis of γδ T cells during thymic ontogeny and in peripheral lymphoid organs, Proc Natl Acad Sci USA, 86, 5094, ; Kemp K. (1999), Leishmania specific T cells expressing interferon-gamma (IFN-γ) and IL-10 upon activation are expanded in individuals cured of visceral leishmaniasis, Clin Exp Immunol, 116, 500, ; Lahmers K. (2005), The CD4<sup>+</sup> T cell immunodominant Anaplasma marginale major surface protein 2 stimulates γδ T cell clones that express unique T cell receptors, J Leukoc Biol, 77, 199, ; Meissner N. (2003), Serial analysis of gene expression in circulating γδ T cell subsets defines distinct immunoregulatory phenotypes and unexpected gene expression profiles, J Immunol, 170, 356, ; Maślanka T. (2010), CD4<sup>+</sup> regulatory cells, Med Weter, 66, 827. ; Maślanka T. (2011), CD8<sup>+</sup> regulatory cells, Med Weter, 67, 91. ; Maślanka T. (2011), In vitro effects of dexamethasone on bovine CD25<sup>+</sup>CD4<sup>+</sup> and CD25<sup>-</sup>CD4<sup>+</sup> cells, Res Vet Sci, ; McNally A. (2011), CD4<sup>+</sup>CD25<sup>+</sup> regulatory T cells control CD8<sup>+</sup> T-cell effector differentiation by modulating IL-2 homeostasis, Proc Natl Acad Sci USA, 108, 7529, ; Pandiyan P. (2007), CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>+</sup> regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4<sup>+</sup> T cells, Nat Immunol, 8, 1353, ; Pollock J. (2002), The WC1<sup>+</sup> γδ T-cell population in cattle: a possible role in resistance to intracellular infection, Vet Immunol Immunopathol, 89, 105, ; Price S. (2007), Workshop cluster 1<sup>+</sup> γδ T-cell receptor+ T cells from calves express high levels of interferon-γ in response to stimulation with interleukin-12 and -18, Immunology, 120, 57. ; Rogers A. (2005a), γδ T cell function varies with the expressed WC1 coreceptor, J Immunol, 174, 3386, ; Rogers A. (2005b), Function of ruminant γδ T cells is defined by WC1.1 or WC1.2 isoform expression, Vet Immunol Immunopathol, 108, 211, ; Roncarolo M. (2001), Type 1 T regulatory cells, Immunol Rev, 182, 68, ; Sandbulte M. (2002), T-cell populations responsive to bovine respiratory syncytial virus in seronegative calves, Vet Immunol Immunopathol, 84, 111, ; Sawitzki B. (2005), IFN-γ production by alloantigen-reactive regulatory T cells is important for their regulatory function in vivo, J Exp Med, 201, 1925, ; Smyth A. (2001), In vitro responsiveness of γδ T cells from Mycobacterium bovis-infected cattle to mycobacterial antigens: predominant involvement of WC1<sup>+</sup> cells, Infect Immun, 69, 89, ; Takamatsu H. (1997), A γδ T cell specific surface receptor (WC1) signaling G0/G1 cell cycle arrest, Eur J Immunol, 27, 105, ; Tang Q. (2008), The Foxp3<sup>+</sup> regulatory T cell: a jack of all trades, master of regulation, Nat Immunol, 9, 239, ; Toka F. (2011), Rapid and transient activation of γδ T cells to IFN-γ production, NK cell-like killing, and antigen processing during acute virus infection, J Immunol, 186, 4853, ; Welsh M. (2002), Responses of bovine WC1<sup>+</sup> γδ T cells to protein and nonprotein antigens of Mycobacterium bovis, Infect Immun, 70, 6114, ; White A. (2002), Expression of the bovine high affinity IL-12 receptor β2, Vet Immunol Immunopathol, 84, 127, ; Wilson R. (1996), T-cell subsets in blood and lymphoid tissues obtained from fetal calves, maturing calves, and adult bovine, Vet Immunol Immunopathol, 53, 49, ; Workman C. (2009), The development and function of regulatory T cells, Cell Mol Life Sci, 66, 2603, ; Wyatt C. (1994), Differential distribution of γδ T-cell receptor lymphocyte subpopulations in blood and spleen of young and adult cattle, Vet Immunol Immunopathol, 40, 187,