Life Sciences and Agriculture

Acta Biologica Cracoviensia s. Botanica

Content

Acta Biologica Cracoviensia s. Botanica | 2021 | Ahead of print |

Download PDF Download RIS Download Bibtex

Abstract

The achene morphology and pericarp anatomy of 12 taxa representing three genera ( Anemone, Hepatica, and Pulsatilla) of the subtribe Anemoninae were investigated using microtome and light microscopy to evaluate the taxonomic implications of achene characters. The achenes of Anemone were elliptical or obovoid and beaked, whereas the achene of Hepatica and Pulsatilla were obovoid and elliptical, respectively. Noticeable variations in both quantitative and qualitative features of achenes were observed among the species of the three genera. One-way analysis of variance indicated that the quantitative achene variables among the species were highly significant (P<0.001). Pearson’s correlation coefficient also showed a significant correlation between different achene variables. The pericarp structure, particularly the number of cell layers and cell forms in the exocarp and endocarp, seems to be very useful for species delimitation in Anemone and Hepatica. The nature of the endotesta could provide substantial proof for sub-generic classification in Anemone. Unweighted paired group analysis showed the utility of achene features for taxonomic groupings of the species within the studied genera. Although the specimen samples represented a limited range of taxa, the achene features and pericarp anatomy provided a reasonable source for the taxonomic treatment of the studied genera within the subtribe.
Go to article

Authors and Affiliations

Balkrishna Ghimire
1
ORCID: ORCID
Dabin Yum
2
Jae Hyeun Kim
2
Mi Jin Jeong
2

  1. Division of Forest Biodiversity, Korea National Arboretum, Pocheon 11186, Korea
  2. Division of Plant Resources, Korea National Arboretum, Pocheon 11186, Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, female gametophytes of Silene muradica, which is a gynodioecious species, were examined histologically. Buds and blossoms of S. muradica were used as the research material. They were collected in the Sivas province (Turkey) in July 2019, and fixed with ethanol:acetic acid solution (3:1, v/v). Flower parts were dissected under a stereo microscope. They were dehydrated in rising alcohol series and then embedded in Historesin. The sections were taken by a rotary microtome and stained with 0.5% Toluidine blue O. The ovary of S. muradica has three carpels and a single chamber, the ovules are arranged on a central column. The mature ovule is of the campylotropous type, crassinucellate and bitegmig. The megaspore mother cell undergoes regular meiotic division and forms a linear megaspore tetrad after meiosis. The development of the embryo sac is monosporic. The chalazal megaspore is functional and the others degenerate. The mature embryo sac is eight-nucleated and of the Polygonum type. The synergid cells and the egg cell are completely surrounded by the cell wall. Antipodal cells are temporary cells, which degenerate immediately after fertilization. Before fertilization, polar nuclei are fused in the central cell and form the secondary nucleus. The endosperm development is of the nuclear type. Nucellar tissue is permanent and forms perisperm in mature seeds. The embryo development is of the Caryophyllad type. In this study, the development of the female gametophyte of S. muradica, which was determined to be a gynodioecious species, was reported for the first time.
Go to article

Authors and Affiliations

Ciler Kartal
1
ORCID: ORCID
Mehmet Tekin
2
ORCID: ORCID

  1. Department of Biology, Faculty of Science, Trakya University, Edirne, Turkey
  2. Department of Pharmaceutical Botany, Faculty of Pharmacy, Trakya University, Edirne, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Accumulation of LaCl3, a well-known Ca2+-channel blocker, can inhibit plant growth. However, the current understanding of its effects on gene expression is limited. In this paper, different concentrations of LaCl3 (0, 0.5, 1.0, 1.5, 2.0 mM) were used to treat germinated wheat ( Triticum aestivum L.) seeds for 24 h. The degree of root growth inhibition gradually increased with increasing LaCl3 concentration. qRT-PCR analysis revealed that the expression of several key genes related to the cell cycle process, such as pcna, mcm2, rdr and cyclin B, were significantly down-regulated. Further analysis of genomic DNA instability using Random Amplified Polymorphic DNA (RAPD) and methylation levels by Coupled Restriction Enzyme Digestion-Random Amplification (CRED-RA) analysis indicated a significant increase in genomic DNA polymorphisms and methylation levels. The results of this study verified that the reasons why LaCl3 treatment can inhibit the growth of wheat roots are as follows: interference in the normal progression of the cell cycle, induction of genomic DNA instability and increase in DNA methylation levels.
Go to article

Authors and Affiliations

Xia Lei
1
Keshi Ma
2
Feixiong Zhang
1

  1. College of Life Sciences, Capital Normal University, Beijing 100048, China
  2. College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou City, Henan Province, 466001, China
Download PDF Download RIS Download Bibtex

Abstract

Our study involved the first-ever evaluation of the performance of anther culture and wheat × maize hybridization techniques in producing haploids or doubled haploids as a result of spontaneous doubling of the chromosome number during androgenesis in plants from 30 wheat genotypes including ancient, local and modern types. The results indicated that the best induction rates of androgenic structures and haploid embryos for the hexaploid and tetraploid wheat genotypes were obtained with anther culture and wheat × maize hybridization, respectively. Whereas only one regenerated plant from 15 genotypes of tetraploid wheat was obtained, 13 plants were regenerated from 15 genotypes of hexaploid wheat. Moreover, haploid embryos obtained in wheat × maize hybridization 60 and 100% green plants regenerated in relation to the number of the cultured haploid embryos. Genotypes with high induction capacity to produce androgenic structure or haploid embryos did not have desired haploid plantlets regeneration capacity and vice-versa. However, with both methods, hexaploid wheat genotypes had a considerable ability to produce green plants. Doubled haploid plants were obtained from ancient and local wheat genotypes by both methods, but not from modern wheat. Those genotypes can be used as parents in future wheat breeding programs and new varieties may be obtained by selecting pure lines in wheat populations
Go to article

Authors and Affiliations

Gamze Gurtay
1
Imren Kutlu
2
Suleyman Avci
3

  1. Eskisehir Osmangazi University, Faculty of Agriculture, Department of Field Crops, 26160 Eskisehir, Turkey
  2. Eskisehir Osmangazi University, Faculty of Agriculture, Department of Biosystem Engineering, 26160 Eskisehir, Turkey
  3. 1Eskisehir Osmangazi University, Faculty of Agriculture, Department of Field Crops, 26160 Eskisehir, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The genus Narcissus has several endemic, rare and/or threatened species in the Iberian Peninsula and North Africa. In vitro propagation is a useful tool for threatened plants conservation used in ex situ strategies. Thus, the aim of this work was to study the propagation in vitro of bulb scale explants of five endemic, rare and/or endangered Narcissus species from the Iberian Peninsula, treated with different PGR combinations. Initiation was achieved in half-strength Murashige and Skoog (MS) basal salts and vitamins, 10 g/L sucrose, 500 mg/L casein hydrolysate, 2 mg/L adenine, 10 mg/L glutathione and 5.5 g/L plant agar. In the multiplication phase, the highest bulblet proliferation was obtained in MS medium supplemented with 30 g/L sucrose and the combination of 10 μM 6-Benzylaminopurine (BAP) + 5 μM α-Naphthaleneacetic acid (NAA) in N. alcaracensis, N. eugeniae and N. hedraeanthus; 20 μM BAP + 5 μM NAA in N. jonquilla and N. yepesii. The highest rooting was obtained with 5 μM NAA + 1 μM Indole-3-butyric acid (IBA) for all species (>75%) and more than 80% of the produced bulblets were successfully acclimatized.
Go to article

Authors and Affiliations

Jorge Juan-Vicedo
1 2
Atanas Pavlov
3 4
Segundo Ríos
1
Jose Luis Casas
1

  1. Instituto Universitario de Investigación CIBIO, Universidad de Alicante, Carretera Sant Vicent del Raspeig, 03690 Sant Vicent del Raspeig (Alicante), Spain
  2. Current address: Instituto de Investigación en Medio Ambiente y Ciencia Marina IMEDMAR, Universidad Católica de Valencia, Carrer Guillem de Castro, 94, 46001 Valencia, Spain
  3. Laboratory of Applied Biotechnologies, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Boulevard, 4000 Plovdiv, Bulgaria
  4. University of Food Technologies, 26 Maritza Boulevard, 4002 Plovdiv, Bulgaria

Instructions for authors

ACTA BIOLOGICA CRACOVIENSIA Series Botanica is an English-language journal founded in 1958, devoted to plant anatomy and morphology, cytology, genetics, embryology, tissue culture, physiology, biochemistry, biosystematics, molecular phylogenetics and phylogeography, as well as phytochemistry. It is published twice a year.

1. ACTA BIOLOGICA CRACOVIENSIA Series Botanica publishes original papers embodying the results of experimental or theoretical research, invited reviews, and brief communications. Manuscripts will be considered only on the understanding that they have not been published and are not being considered for publication elsewhere, that all authors agree on the content of the manuscript, and that laws on nature protection were not violated during the study.
Authors have to indicate their specific contributions to the published work in Authors’ Contributions and the sources of financial support of their research in Acknowledgements. They should clearly describe the following in their cover letter: (1) the aims and hypothesis of the paper; (2) the novelty of the paper − new achievements or innovations contained in the paper; and (3) the general significance of their paper.
Articles should be written in English (American spelling). Authors whose native language is not English are strongly advised to have their manuscripts checked by a professional translator or a native speaker prior to submission. Manuscripts should be written concisely. Purely descriptive studies, karyological notes on plants outside of central Europe, papers on economic botany as well as manuscripts of restricted interest generally are not considered for publication. In vitro studies which only describe protocols for plant regeneration without providing relevant biological information will not be considered for publication. A manuscript in the field of plant cell culture, physiology, biochemistry and phytochemistry must contain new insights that lead to a better understanding of some aspect of fundamental plant biology. They should be of interest to a wide audience and/or the methods employed should contribute to the advancement of established techniques and approaches.
Authors are charged a fee for publication of their articles. The bill for publication will be sent with the galley proof. The fee, which is calculated after all articles are accepted, will not exceed 20 USD per printed page for foreign authors and 70 PLZ per printed page for Polish authors. For the standard fee, color illustrations will appear only in the online version of the Journal. At authors’ request and for an extra fee, color illustrations may also appear in the printed version. While sending the manuscript, in the letter to the Editor, the authors should declare their contribution towards the extra costs and enumerate the illustrations which are to be printed in color.

2. Manuscripts should be submitted via the editorial manager: https://www.editorialsystem.com/abcsb

Editor: Prof. Dr. ANDRZEJ JOACHIMIAK
Department of Plant Cytology and Embryology
Jagiellonian University
ul. Gronostajowa 9, 30-387 Kraków, Poland
e-mail:a.joachimiak@uj.edu.pl

Manuscripts will be examined by at least two anonymous and independent refereeswho have declared that they have no conflict of interest with the author(s). Invitedreferees evaluate the manuscript according to the following criteria: (1) formalaspects, (2) originality, (3) importance in its field, (4) theoretical background, (5)adequacy of methodology, (6) results and interpretation, and (7) overall quality.

3. To shorten the review process, authors are asked to indicate 3 or 4 names of specialists working in the same scientific discipline outside of their institution (including the name of their institution and e-mail addresses) who could serve as reviewers of the manuscript. Manuscripts should be double-spaced, with lines numbered. On all points of style regarding text and tables, follow a current copy of the journal. Words to be italicized (scientific names of genus and species only) should be typed in italics.

4. Original papers should not exceed 8 printed pages (approx. 24 manuscript pages including tables and figures).

5. Original papers should be headed by the title of the paper, author’s name, institution, address, e-mail address of corresponding author(s) and short title (no more than 50 characters), and should be preceded by 5-10 Key words and a short Abstract. Original research papers should be divided into the following sections: Introduction, Materials and Methods, Results, Discussion, Conclusion, Authors’ Contributions, Acknowledgements and References.

6. Invited reviews are mostly of limited scope on timely subjects written for a general, well-informed audience. Invited reviews are solicited by the Editor. Ideas for unsolicited reviews should be discussed with the Editor. They are subject to the usual review procedure.

7. Brief communications are short papers (1–4 printed pages) reporting new findings that do not need a standard full-length treatment with the usual main headings. Brief communications are subject to normal review.

8. References in the text should be cited in the following form: Newton (1990) or Newton and Berrie (1982) or (Ward, 1950; Hiroshi and Ohta, 1970). For three or more authors, use the form Zinkowski et al. (1991) or (Zinkowski et al., 1991).
Examples of style for references:
a) citations of journal papers:

PALMER TP. 1962. Population structure, breeding system, interspecific hybridization and alloploidy. Heredity 17: 278-283.
CHEN BY, HENEEN WK, SIMONSEN V. 1989. Comparative and genetic studies of isozymes in resynthesized and cultivated Brassica napus L., Brassica campestris L., and B. alboglabra Baitey. Theoretical and Applied Genetics 77: 673-679.
b) citations of books, congress proceedings, theses:
BERGRREN DJ. 1981. Atlas of Seeds, part 3. Swedish Museum of Natural History, Stockholm.
BING D, DOWNEY RK, RAKOW GFW. 1991. Potential of gene transfer among oilseed Brassica and their weedy relatives. Proceedings of the GCTRC Eighth International Rapeseed Congress, 9-11 July 1991, 1022-1027. Saskatoon, Saskatchewan.
ROMEO JT. 1973. A chemotaxonomic study of the genus Erythrina (Leguminosae). Ph.D. disseration, University of Texas, Austin, TX.
c) citations of articles and chapters from books:
PHILLIPS RL. 1981. Pollen and pollen tubes. In: Clark G [ed.], Staining Procedures, 61-366. Williams and Wilkins, Baltimore, MD.
Authors’ names in References should be written in small caps.

9. Tables must be numbered consecutively with Arabic numerals and submitted separately from the text at the end of the paper. The title should be brief and written in the upper part of the table. Footnotes to tables should be indicated by lower-case letters.

10. Illustrations must be restricted to the minimum needed to clarify the text. Previously published illustrations are not accepted. All figures (photographs, graphs, diagrams) must be mentioned in the text. All figures are to be numbered consecutively throughout and submitted separately. Figure captions should be given on a separate page. Photographs should be submitted the same size as they are to appear in the journal. If reduction is absolutely necessary, the scale desired should be indicated. The publisher reserves the right to reduce or enlarge illustrations. Photographs should match either the column width (83 mm) or the printing area (170 x 225 mm). Whenever possible, several photos should be grouped in a plate. The photos should be sharp, and each one should be marked with a lower-case letter on the plate. For photographs without an integral scale the magnification of photographs must be stated in the legend. Color illustrations will be accepted; however, the author will be expected to contribute towards the extra costs. The charge will not exceed 150 USD per printed page for foreign authors and 500 PLZ per printed page for Polish authors.

11. Manuscripts resubmitted after revision: Submit your text written in a standard program (Microsoft Word). Bitmap graphics files should be written in TIFF, or BMP, and vector graphics in AI or CDR (curves). Illustrations written in MS Word or PowerPoint will not be accepted. Submit the text, tables and each figure (plate) as separate files. Every paper will be checked for style and grammar.
The Editor reserves the right to introduce corrections suggested by the journal’s line editor.

12. Proof will be sent directly to the authors in electronic form as a pdf file. Authors’ corrections have to be inserted in the printout of the PDF proof. The corrected proofs must be returned to the Editor within six days via Editorial Manager or by e-mail. Proofs not returned promptly by authors will be corrected by the Editor.

13. Copyright. Exclusive copyright in all papers accepted for publication must be assigned to the Polish Academy of Sciences, but the Academy will not restrict the authors’ freedom to use material contained in the paper in other works by the authors (with reference where they were first published).

14. Offprints. A pdf of each paper is supplied to the authors free of charge.

This page uses 'cookies'. Learn more