Life Sciences and Agriculture

Acta Biologica Cracoviensia s. Botanica


Acta Biologica Cracoviensia s. Botanica | 2018 | vol. 60 | No 2

Download PDF Download RIS Download Bibtex


To keep genetic diversity, flowering plants have developed a self-incompatibility system, which can prevent self-pollination.

It has been reported that calcium concentration in pistil papilla cells was increased after self-pollination

in transformed self-incompatible Arabidopsis thaliana. In this study, we found that CML27 changed its expression

level for both mRNA and protein when compared to transcriptome and proteome. At the same time, CML27 was

expressed in the anther and pistil at a high level and reached up to 5-fold up-regulated expression in the pistil

at 1 h post-pollination when compared to 0 min. In order to find out potential proteins that may interact with

BoCML27, BoCML27 was expressed in and isolated from E. coli. After its co-incubation with Brassica oleracea

pistil proteins, the products were separated on SDS-PAGE gels. We found a specific band at the position between

130–180 kDa. Through LC-MS-MS (Q-TOF) analysis, eight proteins were identified from the band. The proteins

include 26S proteasome non-ATPase regulatory (26S), Phospholipase D, alpha 2 (PLDα2) involved in Ca2+ binding

and Coatomer subunit alpha-2-like (Coatomer) involved in vesicle mediated transport. All of these identified

proteins provide new insights for the self-incompatibility response in B. oleracea, specific for increasing Ca2+

concentration in pistil papilla cells.

Go to article

Authors and Affiliations

Xiao Ping Lian
Jing Zeng
He Cui Zhang
Xiao Hong Yang
Liang Zhao
Li Quan Zhu
Download PDF Download RIS Download Bibtex


Petiole bending in detached leaves of Bryophyllum calycinum was intensively investigated in relation to polar auxin transport in petioles. When detached leaves were placed leaf blade face down, clear petiole bending was observed. On the other hand, no petiole bending was found when detached leaves were placed leaf blade face up. Indole-3-acetic acid (IAA) exogenously applied to petioles was significantly effective to induce and/or stimulate petiole bending when detached leaves were placed leaf blade face down. To clarify the mechanisms of petiole bending in detached leaves of B. calycinum when they were placed leaf blade face down, the effects of application of IAA, ethephon which is an ethylene releasing compound, inhibitors of polar auxin transport such as 2,3,5-tiiodobenzoic acid (TIBA), N-1-naphthylphthalamic acid (NPA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA) and methyl jasmonate (JA-Me) were thoroughly investigated. Ethephon was not effective to enhance petiole bending, suggesting that ethylene derived from exogenously applied IAA does not play an important role in petiole bending in detachd leaves of B. calycinum. This suggestion was strongly supported by the fact that ethephon exogenously applied to petioles in intact plant of B. calycinum had no effect on inducing epinasty and/or hyponasty either (Ueda et al., 2018). Potent inhibitors of polar auxin transport, TIBA and HFCA, and JA-Me were extremely effective to inhibit petiole bending but NPA was not. Almost no petiole bending was observed in excised petiole segments without the leaf blade. Applicaton of IAA to the cut surface of petioles in the leaf blade side strongly promoted petiole bending. Polar auxin transport in excised petioles of B. calycinum was intensively investigated using radiolabeled IAA ([1-14C] IAA). Clear polar auxin transport was observed in excised petiole segments, indicating that auxin allows movement in one direction: from the leaf blade side to the stem side in petioles. When detached leaves were placed only leaf blade face down, transported 14C-IAA was reduced in the lower side of the excised petioles. These results strongly suggest that transport and/or lateral movement of endogenous auxin biosynthesized or produced in the leaf blade are necessary to induce petiole bending in detached leaves of B. calycinum. Mechanisms of petiole bending in detached leaves of B. calycinum are also discussed in relation to polar auxin transport and lateral movement of auxin.

Go to article

Authors and Affiliations

Junichi Ueda
Kensuke Miyamoto
Justyna Góraj-Koniarska
Marian Saniewski
Download PDF Download RIS Download Bibtex


An efficient system of micropropagation via somatic embryogenesis from root-derived callus was established in

Arabica coffee (Coffea arabica L.). Twenty-six callus lines were induced on MS (Murashige and Skoog, 1962)

medium supplemented with combinations of NAA (0, 0.1, 0.5, 1 and 2 mg/L) plus BA (0, 1 and 2 mg/L), or 2,4-D

(0, 0.1, 0.5, 1 and 2 mg/L) plus TDZ (0, 1 and 2 mg/L). Subsequently, two types of somatic embryos were obtained

from callus cultures and named S-type and I-type embryos. The S-type embryos were obtained from an 18-monthold

callus line which was induced and maintained at 2 mg/L TDZ and 0.1 mg/L 2,4-D near the end of each period

of the subculture. These embryos have a developmental barrier, which did not pass through the torpedo stage

and could be overcome by a supplement of 2 or 5 mg/L BA. The I-type embryos were induced from 3-month-old

callus when transferred onto induction media, i.e., MS supplemented with TDZ (2 and 5 mg/L) plus 2,4-D (0 and

0.1 mg/L). The significantly highest response, i.e., 13.3 embryos per callus clump was obtained at 2 mg/L TDZ.

In this study, the results reveal that TDZ has a crucial effect on embryogenic callus induction, proliferation and

subsequent somatic embryogenesis.

Go to article

Authors and Affiliations

Yi-Chieh Wang
Meng-Ze Lin
Bin Huang
Hsiao-Hang Chung
Jen-Tsung Chen
Download PDF Download RIS Download Bibtex


This study is the first comparison of the morphology of pollen grains in ten cultivars of three species of the Taxus,

Torreya nucifera and Cephalotaxus harringtonia var. drupacea genera. The material came from the Botanical

Garden of Adam Mickiewicz University in Poznań, Poland. Each measurement sample consisted of 50 pollen

grains. In total, 750 pollen grains were analyzed. Light and electron scanning microscopy was used for the morphometric

observation and analysis of pollen grains. The pollen grains were inaperturate and classified as small

and medium-sized. They were prolate-spheroidal, subprolate to prolate in shape. The surface of the exine was

microverrucate-orbiculate, perforate in Cephalotaxus harringtonia var. drupacea, granulate-orbiculate, perforate

in all Taxus taxa and granulate-microverrucate-orbiculate, perforate in Torreya. The orbicules were rounded to

oval in surface view, and the size was considerably diversified. The pollen features were insufficient to distinguish

between individual Taxus members – only groups were identified. The values of the coefficient of variability of

three features (LA, SA and LA/SA) were significantly lower than the orbicule diameter. The pollen surface of all

Taxus specimens was similar, so it was not a good identification criterion. The pollen grains of the Taxus taxa

were smaller and had more orbicules than Cephalotaxus and Torreya. Palynological studies provided taxonomic

support for recognition of two different genera of the Cephalotaxaceae and Taxaceae families, which are closely


Go to article

Authors and Affiliations

Joanna Bykowska
Małgorzata Klimko
Download PDF Download RIS Download Bibtex


Plant tissue culture techniques have become an integral part of progress in plant science research due to the opportunity offered for close study of detailed plant development with applications in food production through crop improvement, secondary metabolites production and conservation of species. Because the techniques involve growing plants under controlled conditions different from their natural outdoor environment, the plants need adjustments in physiology, anatomy and metabolism for successful in vitro propagation. Therefore, the protocol has to be optimized for a given species or genotype due to the variability in physiological and growth requirement. Developing the protocol is hampered by several physiological and developmental aberrations in the anatomy and physiology of the plantlets, attributed to in vitro culture conditions of high humidity, low light levels and hetero- or mixotrophic conditions. Some of the culture-induced anomalies become genetic, and the phenotype is inherited by clonal progenies while others are temporary and can be corrected at a later stage of protocol development through changes in anatomy, physiology and metabolism. The success of protocols relies on the transfer of plantlets to field conditions which has been achieved with many species through stages of acclimatization, while with others it remains a challenging task. This review discusses various adjustments in nutrition, physiology and anatomy of micro-propagated plants and field grown ones, as well as anomalies induced by the in vitro culture conditions.

Go to article

Authors and Affiliations

Beata Myśków
Ilona Czyczyło-Mysza
Sandra Sokołowska
Stefan Stojałowski
Download PDF Download RIS Download Bibtex


We have developed an effective protocol for in vitro micropropagation in order to obtain large numbers of identical plants and another protocol for in vitro polyploidization of Ajuga reptans, based on the use of oryzalin. Two donor plants of A. reptans (AR 4, AR 7) were treated with 0, 1, 5, 10 μM oryzalin for 2 weeks. The analysis of the ploidy level of these plants was verified by flow cytometric analysis using the internal standardization method. The effects of polyploidization on growth as well as morphological and stomatal size were also measured. After in vitro polyploidization, some plants became tetraploids or octoploids. The most efficient conditions for inducing tetraploidy were the treatments with 10 μM oryzalin.

Go to article

Authors and Affiliations

Michaela Švécarová
Božena Navrátilová
Vladan Ondřej
Download PDF Download RIS Download Bibtex


Chromosome numbers for 15 taxa of Hieracium L. s.str. from Bulgaria, Greece, Macedonia, Poland, Romania

and Slovakia are given and their metaphase plates are illustrated. Chromosome numbers are published for the

first time for H. vagneri Pax s.str. (2n = 4x = 36), H. wiesbaurianum subsp. herculanum Zahn (2n = 4x = 36),

H. wiesbaurianum subsp. kelainephes Nyár. & Zahn (2n = 3x = 27), as well as for two undescribed species

of hybrid origin between H. umbellatum L. and H. wiesbaurianum (2n = 3x = 27), and between H. sparsum

Friv. and H. schmidtii (2n = 3x = 27), and for three undescribed species of the H. djimilense agg.

(2n = 3x = 27), H. heldreichii agg. (2n = 3x = 27), and H. sparsum agg. (2n = 3x = 27). Furthermore, the chromosome

numbers of two undescribed species of hybrid origin between H. umbellatum L. and H. wiesbaurianum (2n = 3x = 27), and between H. sparsum Friv. and H. schmidtii (2n = 3x = 27) are given. A new,

tetraploid chromosome number is given for H. barbatum Tausch from the northernmost locality of the species

in Europe.

Go to article

Authors and Affiliations

Krystyna Musiał
Agnieszka Janas
Zbigniew Szeląg

Instructions for authors

ACTA BIOLOGICA CRACOVIENSIA Series Botanica is an English-language journal founded in 1958, devoted to plant anatomy and morphology, cytology, genetics, embryology, tissue culture, physiology, biochemistry, biosystematics, molecular phylogenetics and phylogeography, as well as phytochemistry. It is published twice a year.

1. ACTA BIOLOGICA CRACOVIENSIA Series Botanica publishes original papers embodying the results of experimental or theoretical research, invited reviews, and brief communications. Manuscripts will be considered only on the understanding that they have not been published and are not being considered for publication elsewhere, that all authors agree on the content of the manuscript, and that laws on nature protection were not violated during the study.
Authors have to indicate their specific contributions to the published work in Authors’ Contributions and the sources of financial support of their research in Acknowledgements. They should clearly describe the following in their cover letter: (1) the aims and hypothesis of the paper; (2) the novelty of the paper − new achievements or innovations contained in the paper; and (3) the general significance of their paper.
Articles should be written in English (American spelling). Authors whose native language is not English are strongly advised to have their manuscripts checked by a professional translator or a native speaker prior to submission. Manuscripts should be written concisely. Purely descriptive studies, karyological notes on plants outside of central Europe, papers on economic botany as well as manuscripts of restricted interest generally are not considered for publication. In vitro studies which only describe protocols for plant regeneration without providing relevant biological information will not be considered for publication. A manuscript in the field of plant cell culture, physiology, biochemistry and phytochemistry must contain new insights that lead to a better understanding of some aspect of fundamental plant biology. They should be of interest to a wide audience and/or the methods employed should contribute to the advancement of established techniques and approaches.
Authors are charged a fee for publication of their articles. The bill for publication will be sent with the galley proof. The fee, which is calculated after all articles are accepted, will not exceed 20 USD per printed page for foreign authors and 70 PLZ per printed page for Polish authors. For the standard fee, color illustrations will appear only in the online version of the Journal. At authors’ request and for an extra fee, color illustrations may also appear in the printed version. While sending the manuscript, in the letter to the Editor, the authors should declare their contribution towards the extra costs and enumerate the illustrations which are to be printed in color.

2. Manuscripts should be submitted via the editorial manager:

Department of Plant Cytology and Embryology
Jagiellonian University
ul. Gronostajowa 9, 30-387 Kraków, Poland

Manuscripts will be examined by at least two anonymous and independent refereeswho have declared that they have no conflict of interest with the author(s). Invitedreferees evaluate the manuscript according to the following criteria: (1) formalaspects, (2) originality, (3) importance in its field, (4) theoretical background, (5)adequacy of methodology, (6) results and interpretation, and (7) overall quality.

3. To shorten the review process, authors are asked to indicate 3 or 4 names of specialists working in the same scientific discipline outside of their institution (including the name of their institution and e-mail addresses) who could serve as reviewers of the manuscript. Manuscripts should be double-spaced, with lines numbered. On all points of style regarding text and tables, follow a current copy of the journal. Words to be italicized (scientific names of genus and species only) should be typed in italics.

4. Original papers should not exceed 8 printed pages (approx. 24 manuscript pages including tables and figures).

5. Original papers should be headed by the title of the paper, author’s name, institution, address, e-mail address of corresponding author(s) and short title (no more than 50 characters), and should be preceded by 5-10 Key words and a short Abstract. Original research papers should be divided into the following sections: Introduction, Materials and Methods, Results, Discussion, Conclusion, Authors’ Contributions, Acknowledgements and References.

6. Invited reviews are mostly of limited scope on timely subjects written for a general, well-informed audience. Invited reviews are solicited by the Editor. Ideas for unsolicited reviews should be discussed with the Editor. They are subject to the usual review procedure.

7. Brief communications are short papers (1–4 printed pages) reporting new findings that do not need a standard full-length treatment with the usual main headings. Brief communications are subject to normal review.

8. References in the text should be cited in the following form: Newton (1990) or Newton and Berrie (1982) or (Ward, 1950; Hiroshi and Ohta, 1970). For three or more authors, use the form Zinkowski et al. (1991) or (Zinkowski et al., 1991).
Examples of style for references:
a) citations of journal papers:

PALMER TP. 1962. Population structure, breeding system, interspecific hybridization and alloploidy. Heredity 17: 278-283.
CHEN BY, HENEEN WK, SIMONSEN V. 1989. Comparative and genetic studies of isozymes in resynthesized and cultivated Brassica napus L., Brassica campestris L., and B. alboglabra Baitey. Theoretical and Applied Genetics 77: 673-679.
b) citations of books, congress proceedings, theses:
BERGRREN DJ. 1981. Atlas of Seeds, part 3. Swedish Museum of Natural History, Stockholm.
BING D, DOWNEY RK, RAKOW GFW. 1991. Potential of gene transfer among oilseed Brassica and their weedy relatives. Proceedings of the GCTRC Eighth International Rapeseed Congress, 9-11 July 1991, 1022-1027. Saskatoon, Saskatchewan.
ROMEO JT. 1973. A chemotaxonomic study of the genus Erythrina (Leguminosae). Ph.D. disseration, University of Texas, Austin, TX.
c) citations of articles and chapters from books:
PHILLIPS RL. 1981. Pollen and pollen tubes. In: Clark G [ed.], Staining Procedures, 61-366. Williams and Wilkins, Baltimore, MD.
Authors’ names in References should be written in small caps.

9. Tables must be numbered consecutively with Arabic numerals and submitted separately from the text at the end of the paper. The title should be brief and written in the upper part of the table. Footnotes to tables should be indicated by lower-case letters.

10. Illustrations must be restricted to the minimum needed to clarify the text. Previously published illustrations are not accepted. All figures (photographs, graphs, diagrams) must be mentioned in the text. All figures are to be numbered consecutively throughout and submitted separately. Figure captions should be given on a separate page. Photographs should be submitted the same size as they are to appear in the journal. If reduction is absolutely necessary, the scale desired should be indicated. The publisher reserves the right to reduce or enlarge illustrations. Photographs should match either the column width (83 mm) or the printing area (170 x 225 mm). Whenever possible, several photos should be grouped in a plate. The photos should be sharp, and each one should be marked with a lower-case letter on the plate. For photographs without an integral scale the magnification of photographs must be stated in the legend. Color illustrations will be accepted; however, the author will be expected to contribute towards the extra costs. The charge will not exceed 150 USD per printed page for foreign authors and 500 PLZ per printed page for Polish authors.

11. Manuscripts resubmitted after revision: Submit your text written in a standard program (Microsoft Word). Bitmap graphics files should be written in TIFF, or BMP, and vector graphics in AI or CDR (curves). Illustrations written in MS Word or PowerPoint will not be accepted. Submit the text, tables and each figure (plate) as separate files. Every paper will be checked for style and grammar.
The Editor reserves the right to introduce corrections suggested by the journal’s line editor.

12. Proof will be sent directly to the authors in electronic form as a pdf file. Authors’ corrections have to be inserted in the printout of the PDF proof. The corrected proofs must be returned to the Editor within six days via Editorial Manager or by e-mail. Proofs not returned promptly by authors will be corrected by the Editor.

13. Copyright. Exclusive copyright in all papers accepted for publication must be assigned to the Polish Academy of Sciences, but the Academy will not restrict the authors’ freedom to use material contained in the paper in other works by the authors (with reference where they were first published).

14. Offprints. A pdf of each paper is supplied to the authors free of charge.

This page uses 'cookies'. Learn more