The quarterly Polish Polar Research edited by the Committee on Polar Research of the Polish Academy of Sciences is an international journal publishing original research articles presenting the results of studies carried out in polar regions.
All papers are peer-reviewed and published in English.
The Editorial Advisory Board includes renowned scientist from Poland and from abroad.
Polish Polar Research is indexed in Science Citation Index Expanded, Journal Citation Reports/Science Edition, Biological Abstracts, BIOSIS Previews, Cold Regions Bibliography, Antarctic Literature, Geological Abstracts, Polish Scientific Journals Contents - Agricultural and Biological Sciences, Quarterly Review, and Zoological Record.
FRAUD NOTICE
We have been made aware of certain fraudulent activities that have been claiming to represent Polish Polar Research. These activities include a fake, predatory website and unsolicited emails. The aim of the fraud is to trick suspected authors/researchers into believing they are communicating with a journal editor in order to obtain their personal information, scientific results and/or money. Polish Polar Research’s name, logo and other information have been used without permission to try to convey authenticity. If you have any concerns or see suspicious communications that reference Polish Polar Research, please report to Editors-in-Chief. Legitimate information regarding Polish Polar Research and its manuscripts can always be found on our website at http://journals.pan.pl/ppr/. We recommend that authors do not respond to any unsolicited offers of manuscript submissions nor enter any monetary agreement.
Polish Polar Research is an open-access journal in which archive issues are freely accessible and articles are published at no cost to authors.
In general, Antarctic marine bacteria are small, with biovolumes ranging from 0.139 to 0.204 μm-3 cell-1, but their total biomass in seawater is considerable due to relatively high numbers that approximate to 1020 cells km-3. Bacterial biomass becomes more concentrated closer to land. Our multi-year Antarctic studies demonstrated an average total bacterial biomass of 504 tons in Admirality Bay (24 km3) or 21 tons per 1 km3, versus 6.4 tons per 1 km3 in the open ocean. Strikingly, bacterial biomass reached 330 tons per 1 km3 of seawater at the sea-ice edge, as sampled in Goulden Cove in Admiralty Bay. Bacterial biomass in Admirality Bay, which we believe can be enriched by halotolerant and thermotolerant fresh water bacteria from glacial streams, is equal to or even exceeds that of the standing stock of krill (100-630 tons per bay) or other major living components, including phytoplankton (657 tons), flagellates (591 tons), and ciliates (412 tons). However, the bacterial biomass is exceeded by several orders of magnitude by non-living organic matter, which constitutes the basic bacterial carbon source. Factors regulating high bacterial abundance in the vicinity of land are discussed.
A total of sixty five taxa of marine phytoplankton (diatoms, dinoflagellates, silicoflagellates and cyanoprokaryotes) were recorded in the transect from the cold region of the Antarctic (Weddell Sea) up to La Plata Bay, Argentine in the late austral summer (March 1989). Diatoms were the dominant group in a south-north transect from the Seal-Bay (Princess Martha Land, the Antarctic). Most of the phytoplankton species of the cold Antarctic region disappeared around 50°S where there is a steep water temperature gradient. The diatom flora declined in the regions of increasing temperature, i.e. between 60° and 50° S and was replaced by dinoflagellates of the genus Ceratium. Large centric diatom genera Corethron, Rhizosolenia, Chaetoceros and Dactyliosolen represented the most apparent phytoplankton part. The most common of the small centric diatom genera were Thalassiosira, Asteromphalus, Actinocyclus and Coscinodiscus, while several species of Navicula and Nitzschia were the most abundant pennate forms. The presence of a considerable number of freshwater pennate diatoms, characterized as indifferent in the halobion spectrum and mostly periphytic, might be attributed to survival strategies during their development on the floating coastal ice.
This paper reports the preliminary results from the studies on the scanning electron microscopical studies on chrysophycean cysts collected in ponds and streams of King George Island (South Shetlands). The cysts play an important role as the survival developmental stages. Fifteen morphotypes are described, six of which are new for science. Particular attention has been paid to the anatomy of the pore, collar structure and to the ornamentation of the cyst surface.
Phytoplankton samples were collected at 141 stations in the Norwegian, Greenland, Barents and Baltic seas, in July-August 1992 and July-August 1993. In fifteen of these stations 22 unarmoured dinoflagellate species from the order Gymnodiniales belonging to the genera Amphidinium, Cochlodinium, Gymnodinium, Gyrodinium, Torodinium and Polykrikos have been found. Data on 16 species are given here, including synonyms, size or size variation, localities and environmental factors (temperature and salinity at the surface). 14 species are illustrated.
Suspended matter, phytoplankton and light attenuation were investigated in various North East Greenland, Svalbard and Siberian river mouths in 1992-1994. The amount of mineral suspensions well correlated with freshwater discharge in the case of tidal glacier bays, while such correlation in Siberian rivers and pack ice meltwater was not found. Freshwater phytoplankton species were found in Siberian estuaries only and in two other ecosystems marine and ice phytoplankton species prevailed. The light attenuation connected with freshwater discharge seems to be a key factor limiting primary production in coastal Actic waters in the summer. The amount of glacial suspensions well correlated with the salinity drop in the case of Svalbard, while Siberian river estuaries produced very turbid waters with the suspension loads not correlated to freshwater or depth.
The paper presents the results of seven-year survey of Antarctic seals along the western shore of Admiralty Bay, King George Island, South Shetland Islands. Five species were monitored during seven of the eight years, between 1988-95, excluding 1993. Numbers of elephant seals and Antarctic fur seals showed strong annual cycles, fur seals with two seasonal peaks. These of the other three species were more irregular. Fewer Weddell seals were seen in 1994 and 1995 then during the period 1988-92; with this exception, no overall trend in numbers was apparent during the period 1988-95.
Editors-in-Chief
Magdalena BŁAŻEWICZ (Life Sciences), University of Łódź, Poland
e-mail:
magdalena.blazewicz@biol.uni.lodz.pl
Wojciech MAJEWSKI (Geosciences), Institute of Paleobiology PAS, Poland
e-mail:
wmaj@twarda.pan.pl
Michał ŁUSZCZUK (Social Science and Hummanities), UMCS, Poland
e-mail:
michal.luszczuk@poczta.umcs.lublin.pl
Associate Editors
Piotr JADWISZCZAK (Białystok),
e-mail: piotrj@uwb.edu.pl
Krzysztof JAŻDŻEWSKI (Łódź),
e-mail: krzysztof.jazdzewski@biol.uni.lodz.pl
Monika KĘDRA (Sopot)
e-mail: kedra@iopan.gda.pl
Ewa ŁUPIKASZA (Sosnowiec)
e-mail: ewa.lupikasza@us.edu.pl
Piotr PABIS (Łódź),
e-mail: cataclysta@wp.pl
Editorial Advisory Board
Angelika BRANDT (Hamburg),
Claude DE BROYER (Bruxelles),
Peter CONVEY (Cambridge, UK),
J. Alistair CRAME (Cambridge, UK),
Rodney M. FELDMANN (Kent, OH),
Jane E. FRANCIS (Cambridge, UK),
Andrzej GAŹDZICKI (Warszawa)
Aleksander GUTERCH (Warszawa),
Jacek JANIA (Sosnowiec),
Jiří KOMÁREK (Třeboň),
Wiesława KRAWCZYK (Sosnowiec),
German L. LEITCHENKOV (Sankt Petersburg),
Jerónimo LÓPEZ-MARTINEZ (Madrid),
Sergio A. MARENSSI (Buenos Aires),
Jerzy NAWROCKI (Warszawa),
Ryszard OCHYRA (Kraków),
Maria OLECH (Kraków)
Sandra PASSCHIER (Montclair, NJ),
Jan PAWŁOWSKI (Genève),
Gerhard SCHMIEDL (Hamburg),
Jacek SICIŃSKI (Łódź),
Michael STODDART (Hobart),
Witold SZCZUCIŃSKI (Poznań),
Andrzej TATUR (Warszawa),
Wim VADER (Tromsø),
Tony R. WALKER (Halifax, Nova Scotia),
Jan Marcin WĘSŁAWSKI (Sopot) - President.
Geosciences
Wojciech
MAJEWSKI
e-mail: wmaj@twarda.pan.pl
phone:
(48 22) 697 88 53
Instytut Paleobiologii PAN
ul. Twarda 51/55
00-818
Warszawa, POLAND
Life Sciences
Magdalena
BŁAŻEWICZ
e-mail: magdalena.blazewicz@biol.uni.lodz.pl
phone:
(48 22) 635 42 97
Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki
ul.
S. Banacha 12/16
90-237 Łódź, POLAND