Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

It is estimated that the amount of used car tires in the European Union in 2016 was established at the level of 3,515,000 Mg, which is undoubtedly a problem from the point of view of engineering and environmental protection. An alternative to storing this waste in landfills is their pyrolysis. As a result of thermal decomposition, calorific value products (oil and gas fraction) are obtained, as well as a solid residue, which due to its composition and properties can be processed into a high quality carbon sorbent. For this purpose, various methods of modification of the pyrolyzate are used, both involving physical and chemical activation. This article presents the characteristics of solid residue after the pyrolysis of rubber tires running at a temperature of about 400°C, which included an analysis of chemical composition (XRF and IR), mineralogical composition (XRD, SEM-EDS) and textural characteristics. Additionally, for the purpose of activation, the sample was treated with nitrogen at a temperature of 550°C. The mineralogical analysis showed that the dominant mineral component is carbon. In addition, the presence of quartz, calcite and sphalerite was observed. Analysis of the chemical composition suggests that due to the high carbon content (about 80% by mass) it is possible for a carbon sorbent from the analyzed waste to be obtained. However, previous preliminary studies did not allow a material constituting a substitute for activated carbon to be obtained, because the applied modification only slightly increased the BET specific surface area, which reached the value of approx. 85 m2/g. Based on the analysis of the pore size distribution of the 2 tested samples, it was found to be homogeneous/modal with a micro/mesoporous nature, while the shape of the hysteresis loop suggests the presence of “bottle shape” pores. Due to the relatively high content of zinc, the composition of waste (about 4% of mass), the possibility of recovery of this element should also be considered.
Go to article

Abstract

Tires play an important role in the automobile industry. However, their disposal when worn out has adverse effects on the environment. The main aim of this study was to prepare activated carbon from waste tire pyrolysis char by impregnating KOH onto pyrolytic char. Adsorption studies on lead onto chemically activated carbon were carried out using response surface methodology. The effect of process parameters such as temperature (°C), adsorbent dosage (g/100 ml), pH, contact time (minutes) and initial lead concentration (mg/l) on the adsorption capacity were investigated. It was found out that the adsorption capacity increased with an increase in adsorbent dosage, contact time, pH, and decreased with an increase in lead concentration and temperature. Optimization of the process variables was done using a numerical optimization method. Fourier Transform Infrared Spectra (FTIR) analysis, X-ray Diffraction (XRD), Thermogravimetric analysis (TGA) and scanning electron microscope were used to characterize the pyrolytic carbon char before and after activation. The numerical optimization analysis results showed that the maximum adsorption capacity of 93.176 mg/g was obtained at adsorbent dosage of 0.97 g/100 ml, pH 7, contact time of 115.27 min, initial metal concentration of 100 mg/and temperature of 25°C. FTIR and TGA analysis showed the presence of oxygen containing functional groups on the surface of the activated carbon produced and that the weight loss during the activation step was negligible.
Go to article

This page uses 'cookies'. Learn more