Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Mining the lower seams in a sequence of shallow, closely spaced coal seams causes serious air leakage in the upper goaf; this can easily aggravate spontaneous combustion in abandoned coal. Understanding the redevelopment of fractures and the changes in permeability is of great significance for controlling coal spontaneous combustion in the upper goaf. Based on actual conditions at the 22307 working face in the Bulianta coal mine, Particle Flow Code (PFC) and a corresponding physical experiment were used to study the redevelopment of fractures and changes in permeability during lower coal seam mining. The results show that after mining the lower coal seam, the upper and lower goafs become connected and form a new composite goaf. The permeability and the number of fractures in each area of the overlying strata show a pattern of „stability-rapid increase-stability“ as the lower coal seam is mined and the working face advances. Above the central area of goaf, the permeability has changed slightly, while in the open-cut and stop line areas are significant, which formed the main air leakage passage in the composite goaf.
Go to article

Abstract

As one of the key techniques in the fully mechanized mining process, equipment selection and matching has a great effect on security, production and efficiency. The selection and matching of fully mechanized mining equipment in thin coal seam are restricted by many factors. In fully mechanized mining (FMM) faced in thin coal seams (TCS), to counter the problems existing in equipment selection, such as many the parameters concerned and low automation, an expert system (ES) of equipment selection for fully mechanized mining longwall face was established. A database for the equipment selection and matching expert system in thin coal seam, fully mechanized mining face has been established. Meanwhile, a decision-making software matching the ES was developed. Based on several real world examples, the reliability and technical risks of the results from the ES was discussed. Compared with the field applications, the shearer selection from the ES is reliable. However, some small deviations existed in the hydraulic support and scraper conveyor selection. Then, the ES was further improved. As a result, equipment selection in fully mechanized mining longwall face called 4301 in the Liangshuijing coal mine was carried out by the improved ES. Equipment selection results of the interface in the improved ES is consistent with the design proposal of the 4301 FMM working face. The reliability of the improved ES can meet the requirements of the engineering. It promotes the intelligent and efficient mining of coal resources in China.
Go to article

This page uses 'cookies'. Learn more