Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The near-surface ice thermal structure of the Waldemarbreen, a 2.5-square km glacier located at 78°N 12°E in Spitsbergen, Svalbard , is described here. Traditional glaciological mass balance measurements by stake readings and snow surveying have been conducted annually since 1996. The near-surface ice temperature was investigated with automatic borehole thermistors in the ablation and accumulation areas in 2007-2008. The mean annual surface ice temperatures (September-June) of the ablation area were determined to be -4.7°C at 1 m depth and -2.5°C at 9 m . For the accumulation area, they were -3.0°C at 2 m , and -2.3°C at 10 m depth between September and August. On the Waldemarbreen, at 10 m depth, the mean annual near-surface ice temperature was 4.0°C above the mean annual air temperature in the accumulation area. The Waldemarbreen may thus be classified as a polythermal type with cold ice which is below the pressure melting point and a temperate ice layer in the bottom sections of the glacier and with a temperate surface layer only during summer seasons. At a depth of 10 m , temperatures are of the order of -2°C to -3°C.
Go to article

Abstract

In this paper, the recent ice regime variations in the Kara Sea have been described and quantified based on the high-resolution remote sensing database from 2003 to 2017. In general, the Kara Sea is fully covered with thicker sea ice in winter, but sea ice cover is continuously declining during the summer. The year 2003 was the year with the most severe ice conditions, while 2012 and 2016 were the least severe. The extensive sea ice begins to break up before May and becomes completely frozen at the end of December again. The duration of ice melting is approximately twice than that of the freezing. Since 2007, the minimum ice coverage has always been below 5%, resulting in wide open-waters in summer. Furthermore, the relevant local driving factors of external atmospheric forcing on ice conditions have been quantitatively calculated and analyzed. Winter accumulated surface air temperature has been playing a primary role on the ice concentration and thickness condition in winter and determining ice coverage index in the following melt-freeze stage. Correlation coefficients between winter accumulated temperature and ice thickness anomaly index, the ice coverage anomaly index, duration of melt-freeze stage can approach -0.72, -0.83 and 0.80, respectively. In summer, meridional winds contribute closely to summer ice coverage anomaly index, with correlation coefficient exceeding 0.80 since 2007 and 0.90 since 2010.
Go to article

This page uses 'cookies'. Learn more