Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 21
items per page: 25 50 75
Sort by:

Abstract

This work attempts to reconstruct the culture that contributed to the philosophical way of thinking. My goal is to extract two important factors: religion carrying individual experience and the importance of certain ideas which are present in that culture. Sources of philosophical thinking can be found in the structure of polis. Only on its basis could the idea of the wise man and citizen as well as religion-oriented individual experience be raised. Greek polis paves the way for a new style of thinking by creating the conditions for its citizens to follow the ideal, regardless of the position they occupy in society. Sustainability, which should be a feature of a good citizen, is also the essence of society. Highly positioned wisdom as moral reflection tinged with religiosity allows thinking according to the laws of logos. Finally, the experience offered by the mystery cults leads to the transformation of their own existence and the emergence of a way of recognition of reality different than before. Undeniably, all the elements related to structure policies with its ideals contribute to the emergence of a new way of thinking in the form of philosophy. One could say that the philosophical objectivity is preceded by the subjectivity and rationality of its roots dating back to irrationality.
Go to article

Abstract

There is a growing body of research investigating the relationships among gratitude, self-esteem, and subjective well-being. However, there remains a scarcity of research examining the impact of self-esteem on the relationship between gratitude and subjective well-being within Arabic context. In this study, 300 Arabic speaking adults completed measurements of gratitude, self-esteem, satisfaction with life, and positive and negative experiences. Participants’ ages ranged between 18 and 54 years with a mean age of 29.67 years (SD = 8.91). The correlation results revealed that there were significant positive relationships between gratitude, self-esteem, satisfaction with life, and positive experience, while there were significant negative relationships between gratitude, self-esteem, satisfaction with life, and negative experience. The results also showed that gratitude and self-esteem directly predicted subjective well-being. Additionally, using structural equation modeling, self-esteem exerted a mediation effect on the relationship between gratitude and subjective well-being. The results suggest that enhancing self-esteem could assist adults who have gratitude to experience greater subjective well-being. Using the source of self-esteem, researchers and professionals could improve one’s subjective wellbeing by employing various gratitude activities.
Go to article

Abstract

Virtual reality (VR) technology now provides players with immersive and realistic experiences as never before. Spatial presence plays a crucial role in the introduction of immersive experience in a VR environment. Spatial presence is a special feeling of personal and physical presence in the displayed environment. In this study, we found that the first-person perspective (1PP) was more effective in raising the sense of spatial presence that induces immersive experience compared to the third-person perspective (3PP) in a VR shooting game. Moreover, eye blink rate was significantly higher in the 1PP compared with the 3PP. The 1PP game setting was more realistic than the 3PP setting, and may have raised participants’ sense of immersion and facilitated eye blink. These results indicate that eye blink rate is increased by the sense of spatial presence, and can be a good measure of subjective immersive experience in a VR environment. Neuroscientific evidences suggest that dopaminergic system is involved in such emotional experiences and physiological responses.
Go to article

Abstract

In search of the invariant semantics of the preposition “da”: a cognitive analysis of the predicative context – The purpose of this article is to verify whether the semantic invariant of the preposition da [starting point allowing physical or mental movement] in the nominal context remains valid in the context of the verb. The analysis of the content of predicates that link to the preposition da will help to answer the question of the extent to which the choice of a preposition is determined by the knowledge of the experienced activities and/or the predicate itself (its selective features) or if it is the result of convention.
Go to article

Abstract

In the article the author discusses peculiarities of three areas of psychologists’ professional activity: conducting scientific research, educating new generations of psychologists, and having a private practice. He particularly stresses the significance of empirical testability of theories for correct and ethical assessment practice (according to Evidence-Based Assessment standard) and therapeutic practice (according to Evidence-Based Practice in Psychology standard). The author also explores the cultural immersion of psychological activity.
Go to article

Abstract

The article presents a zero-dimensional mathematical model of a tubular fuel cell and its verification on four experiments. Despite the fact that fuel cells are still rarely used in commercial applications, their use has become increasingly more common. Computational Flow Mechanics codes allow to predict basic parameters of a cell such as current, voltage, combustion composition, exhaust temperature, etc. Precise models are particularly important for a complex energy system, where fuel cells cooperate with gas, gas-steam cycles or ORCs and their thermodynamic parameters affect those systems. The proposed model employs extended Nernst equation to determine the fuel cell voltage and steadystate shifting reaction equilibrium to calculate the exhaust composition. Additionally, the reaction of methane reforming and the electrochemical reaction of hydrogen and oxygen have been implemented into the model. The numerical simulation results were compared with available experiment results and the differences, with the exception of the Tomlin experiment, are below 5%. It has been proven that the increase in current density lowers the electrical efficiency of SOFCs, hence fuel cells typically work at low current density, with a corresponding efficiency of 45–50% and with a low emission level (zero emissions in case of hydrogen combustion).
Go to article

Abstract

Pilgrimages to the Holy Land have been an old tradition in the Russian culture. For believers, places related to the life and passion of Christ have been an important element of history and geography of salvation since the beginnings of Christianity in Ruthenia. The paper is an attempt to present the fi rst pilgrimage of Andrey Muraviev (1806–1874), a religious writer, theologian, poet, playwright, church and state activist, to Palestine as a personal religious experience and its refl ection in a literary work of art. The pilgrimage to the East became a breakthrough moment in Muraviev’s life and resulted in the writing of "A journey to Holy places in 1830" (Путешествие ко Святым местам в 1830 году), which initiated the religious stage of his writings and became a great success. Although the poet did not call his journey a pilgrimage, such was indeed its nature. Visiting places important to the history of salvation, he participated in services and sacramental life of the Church.
Go to article

Abstract

An evaluation method is developed for temperature oscillation experiments in heat exchangers. The unity Mach number dispersion model is applied. For the consideration of lateral wall heat conduction an effective wall thickness is introduced together with a wall heat transfer coefficient. The evaluation method may also be applied to single blow experiments with pulse signals. A sensitivity analysis describes and discusses the accuracy of different evaluation procedures.
Go to article

Abstract

An evaluation method is developed for single blow experiments with liquids on heat exchangers. The method is based on the unity Mach number dispersion model. The evaluation of one experiment yields merely one equation for the two unknowns, the number of transfer units and the dispersive Peclet number. Calculations on an example confirm that one single blow test alone cannot provide reliable values of the unknowns. A second test with a liquid of differing heat capacity is required, or a tracer experiment for the measurement of the Peclet number. A modified method is developed for gases. One experiment yields the effective number of transfer units and approximate values of the two unknowns. The numerical evaluation of calculated experiments demonstrates the applicability of the evaluation methods.
Go to article

Abstract

The recently developed special unity Mach number dispersion model prescribes the corrections to heat transfer coefficients which are simple functions of the dispersive Peclet numbers. They can be determined through the residence time measurements. An evaluation method is described in which the measured input and response concentration profiles are numerically Laplace transformed and evaluated in the frequency domain. A characteristic mean Peclet number is defined. The method is also applied to the parabolic dispersion model and the cascade model. A calculated example of a tube bundle with maldistribution and backflow demonstrates the suitability of the evaluation method.
Go to article

Abstract

In multi-stage wire drawing machines productivity growth can be achieved at higher drawing speeds by preventing wire breakage during the process. One disadvantage of high-speed wire drawing is the requirement imposed by machine dynamics in terms of its stability and reliability during operation. Tensile forces in the wire must maintained by fast synchronization of all capstans speed. In this process, the displacement sensors play the main role in providing the control system with feedback information about the wire condition. In this study, the influences between the sensors and actuator driven capstans have been studied, and tuner roll concept of a wire drawing machine was experimentally investigated. To this aim, measurements were carried out on two drawing stages at different drawing speeds and obtained results were presented. These results clearly show the fast changes of the capstans speed and the angular displacements of the rollers that tighten the wire, which only confirms the high dynamics of the wire drawing machine.
Go to article

Abstract

Numerical simulation is an economical and effective method in the field of marine engineering. The dynamics of mooring cables has been analysed by a numerical simulation code that was created on a basis of a new element frame. This paper aims at verifying the accuracy of the numerical simulation code through comparisons with both the real experiments and a commercial simulation code. The real experiments are carried out with a catenary chain mooring in a water tank. The experimental results match the simulation results by the numerical simulation code well. Additionally, a virtual simulation of a large size chain mooring in ocean is carried out by both the numerical simulation code and a commercial simulation code. The simulation results by the numerical simulation code match those by the commercial simulation code well. Thus, the accuracy of the numerical simulation code for underwater chain mooring is verified by both the real experiments and commercial simulation code.
Go to article

Abstract

The exudation layer seriously affects the properties and the surface finish of the tin bronze alloy. The effective control of the exudation thickness is important measure for improving the properties of the alloy. In order to study the influence of process parameters on the thickness of exudate layer, the tin bronze alloy was prepared by continuous unidirectional solidification technology at different process parameters. The microstructure of the continuous unidirectional solidification tin bronze alloy was analyzed. The effect of process parameters on microstructure and chemical compositions was studied by orthogonal experiment. The results show that there exists an exudation layer on the surface of the continuous unidirectional solidification tin bronze alloy, and the exudation is mainly composed of a tin-rich precipitated phase. It indicates that the continuous casting speed is the main factor affecting the thickness of exudation layer, followed by mold temperature, melt temperature, cooling water temperature and cooling distance.
Go to article

Abstract

The research was concerned with the influence of chemical composition of austenitic steels on their mechanical properties. Resulting properties of castings from austenitic steels are significantly influenced by the solidification time that affects the size of the primary grain as well as the layout of elements within the dendrite and its parts with regard to the last solidification points in the interdendritic melt. During solidification an intensive segregation of all admixtures occurs in the melt, which causes a whole range of serious metallurgical defects and it has also a significant influence on subsequent precipitation of carbides and intermetallic phases. Chemical heterogeneity then affects the structure and mechanical properties of the casting. In a planned experiment, we cast melted steels containing 18 to 28 % Cr and 8 to 28 % Ni with variable carbon and nitrogen contents. Testing the tensile strength of the cast specimens we could determine the Rp0.2, Rm, and A5 values. The dependence of the mechanical properties on the chemical content was described by regression equations. The planned experiment results allow us to control the chemical content for the given austenitic steel quality to achieve the required values of the mechanical properties.
Go to article

Abstract

For most precious metal mines, cemented tailings backfill slurry (CTBS) with different cement-sand ratio and solid concentration are transported into the gobs to keep the stability of the stope and mitigate environmental pollution by mine tailing. However, transporting several kinds of CTBS through the same pipeline will increase the risk of pipe plugging. Therefore, the joint impacts of cement-sand ratio and solid concentration on the rheological characteristics of CTBS need a more in-depth study. Based on the experiments of physical and mechanical parameters of fresh slurry, the loss of pumping pressure while transporting CTBS with different cement-sand ratio, flux and solid mass concentration were measured using pumping looping pipe experiments to investigate the joint impacts of cement-sand ratio and solid concentration on the rheological characteristics of CTBS. Meanwhile, the effect of different stopped pumping time on blockage accident was revealed and discussed by the restarting pumping experiments. Furthermore, Fluent software was applied to calculate the pressure loss and velocity distribution in the pipeline to further analysis experimental results. The overall trends of the simulation results were good agreement with the experiment results. Then, the numerical model of the pipeline in the Sanshandao gold mine was conducted to simulate the characteristics of CTBS pipeline transportation. The results show that the pumping pressure of the delivery pump can meet the transportation requirements when there is no blockage accident. This can provide a theoretical method for the parameters optimizing in the pipeline transportation system.
Go to article

Abstract

The aim of this paper is to present methods of digitally synthesising the sound generated by vibroacoustic systems with distributed parameters. A general algorithm was developed to synthesise the sounds of selected musical instruments with an axisymmetrical shape and impact excitation, i.e., Tibetan bowls and bells. A coupled mechanical-acoustic field described by partial differential equations was discretized by using the Finite Element Method (FEM) implemented in the ANSYS package. The presented synthesis method is original due to the fact that the determination of the system response in the time domain to the pulse (impact) excitation is based on the numerical calculation of the convolution of the forcing function and impulse response of the system. This was calculated as an inverse Fourier transform of the system’s spectral transfer function. The synthesiser allows for obtaining a sound signal with the assumed, expected parameters by tuning the resonance frequencies which exist in the spectrum of the generated sound. This is accomplished, basing on the Design of Experiment (DOE) theory, by creating a meta-model which contains information on its response surfaces regarding the influence of the design parameters. The synthesis resulted in a sound pressure signal in selected points in space surrounding the instrument which is consistent with the signal generated by the actual instruments, and the results obtained can improve them.
Go to article

Abstract

The effects of water-side operating conditions (mass flow rates and inlet temperatures) of both evaporator and gas cooler on the experimental as well as simulated performances (cooling and heating capacities, system coefficient of performance (COP) and water outlet temperatures) of the transcritical CO2 heat pump for simultaneous water cooling and heating the are studied and revised. Study shows that both the water mass flow rate and inlet temperature have significant effect on the system performances. Test results show that the effect of evaporator water mass flow rate on the system performances and water outlet temperatures is more pronounced (COP increases by 0.6 for 1 kg/min) compared to that of gas cooler water mass flow rate (COP increases by 0.4 for 1 kg/min) and the effect of gas cooler water inlet temperature is more significant (COP decreases by 0.48 for given range) compared to that of evaporator water inlet temperature (COP increases by 0.43 for given range). Comparisons of experimental values with simulated results show the maximum deviation of 5% for cooling capacity, 10% for heating capacity and 16% for system COP.
Go to article

Abstract

The application of stone column technique for improvement of soft soils has attracted a considerable attention during the last decade. However, in a very soft soil, the stone columns undergo excessive bulging, because of very low lateral confinement pressure provided by the surrounding soil. The performance of stone column can be improved by the encapsulation of stone column by geosynthetic, which acts to provide additional confinement to columns, preventing excessive bulging and column failure. In the present study, a detailed experimental study on behavior of single column is carried out by varying parameters like diameter of the stone column, length of stone column, length of geosynthetic encapsulation and stiffness of encapsulation material. In addition, finite-element analyses have been performed to access the radial deformation of stone column. The results indicate a remarkable increase in load carrying capacity due to encapsulation. The load carrying capacity of column depends very much upon the diameter of the stone column and stiffness of encapsulation material. The results show that partial encapsulation over top half of the column and fully encapsulated floating column of half the length of clay bed thickness give lower load carrying capacity than fully encapsulated end bearing column. In addition, radial deformation of stone column decreases with increasing stiffness of encapsulation material.
Go to article

Abstract

In order to optimize the stope structure parameters in broken rock conditions, a novel method for the optimization of stope structure parameters is described. The method is based on the field investigation, laboratory tests and numerical simulation. The grey relational analysis (GRA) is applied to the optimization of the stope structure parameters in broken rock conditions with multiple performance characteristics. The influencing factors include stope height, pillar diameter, pillar spacing and pillar array pitch, the performance characteristics include maximum tensile strength, maximum compressive strength and ore recovery rate. The setting of influencing factors is accomplished using the four factors four levels Taguchi experiment design method, and 16 experiments are done by numerical simulation. Analysis of the grey relational grade indicates the first effect value of 0.219 is the pillar array pitch. In addition, the optimal stope structure parameters are as follows: the height of the stope is 3.5 m, the pillar diameter is 3.5 m, the pillar spacing is 3 m and the pillar array pitch is 5 m. In-situ measurement shows that all of the pillars can basically remain stable, ore recovery rate can be ensured to be more than 82%. This study indicates that the GRA method can efficiently applied to the optimization of stope structure parameters.
Go to article

Abstract

A correlation measuring tool for an endogenous pulsed neutron source experiment is developed in this work. Paroxysmal pulses generated by a bursts of neutron chains are detected by a 10-kbit embedded shift register with a time resolution of 100 ns. The system is implemented on a single reprogrammable device making it a compact, cost-effective instrument, easily adaptable for any case study. The system was verified experimentally in the Esfahan heavy-water zero power reactor (EHWZPR). The results obtained by the measuring tool are validated by the Feynman-α experiment, and a good agreement is seen within the boundaries of statistical uncertainties. The theory of the methods is briefly initiated in the text. Also, the system structure is described, the experimental results and their uncertainties are discussed, and neutron statistics in EHWZPR is examined experimentally.
Go to article

This page uses 'cookies'. Learn more