Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Investment casting combined with the additive manufacturing technology enables production of the thin-walled elements, that are geometrically complex, precise and can be easy commercialized. This paper presents design of aluminium alloy honeycombs, which are characterized with light structure, internal parallel oriented channels and suitable stiffness. Based on 3D printed pattern the mould was prepared from standard ceramic material subjected subsequently to appropriate heat treatment. Into created mould cavity with intricate and susceptible structure molten AC 44200 aluminium alloy was poured under low pressure. Properly designed gating system and selected process parameters enabled to limit the shrinkage voids, porosities and misruns. Compression examination performed in two directions showed different mechanisms of cell deformation. Characteristic plateau region of stress-strain curves allowed to determine absorbed energy per unit volume, which was 485 or 402 J/mm3 depending on load direction. Elaborated technology will be applied for the production of honeycomb based elements designated for energy absorption capability.
Go to article

Abstract

In this paper were conducted virtual tests to assess the impact of geometry changes on the response of metallic hexagonal honeycomb structures to applied loadings. The lateral compressive stress state was taken into consideration. The material properties used to build numerical models were assessed in laboratory tests of aluminium alloy 7075. The modelling at meso-scale level allow to comprehensive study of honeycomb internal structure. The changes of honeycomb geometry elements such as: fillets radius of the cell edges in the vicinity of hexagonal vertexes, wall thickness were considered. The computations were conducted by using finite element method with application of the ABAQUS finite element method environment. Elaborated numerical models allowed to demonstrate sensitivity of honeycomb structures damage process response to geometry element changes. They are a proper tools to perform optimization of the honeycomb structures. They will be also helpful in designing process of modern constructions build up of the considered composite constituents in various branches of industry. Moreover, the obtained results can be used as a guide for engineers. Conducted virtual tests lead to conclusion that simplification of the models of internal honeycomb structure which have become commonplace among both engineers and scientist can lead to inaccurate results.
Go to article

This page uses 'cookies'. Learn more