Developing novel correlations for calculating natural gas thermodynamic properties

Journal title

Chemical and Process Engineering




No 4 December



natural gas ; thermodynamic properties ; novel correlations ; real time properties

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences Committee of Chemical and Process Engineering




Artykuły / Articles


ISSN 0208-6425


AGA8-DC92 EoS, 1992, <i>Compressibility and super compressibility for natural gas and other hydrocarbon gases</i>, Transmission Measurement Committee Report No. 8, AGA Catalog No. XQ 1285, Arlington, VA. ; A. AlQuraishi Shokir (2009), Viscosity and density correlations for hydrocarbon gases and pure and impure gas mixtures, Pet. Sci. Technol, 27, 1674, ; Azizi N. (2010), An efficient correlation for calculating compressibility factor of natural gases, J. Nat. Gas Chem, 19, 642, ; Bahadori A. (2009), A novel correlation for estimation of hydrate forming condition of natural gases, J. Nat. Gas Chem, 18, 453, ; Beggs H. (1973), Study of two-phase flow in inclined pipes, J. of Pet. Tech, 607, ; Čapla L. (2002), Isothermal PVT measurements on gas hydrocarbon mixtures using a vibrating-tube apparatus, J. Chem. Thermodyn, 34, 657, ; Dranchuk P. (1975), Calculation of Z-factors for natural gases using equations of state, J. Can. Petrol. Tech, 14, ; Elsharkawy A. (2001), Compressibility factor for gas condensates, Energy Fuels, 15, 807, ; Elsharkawy A. (2004), Efficient methods for calculations of compressibility, density and viscosity of natural gases, Fluid Phase Equilib, 218, 1, ; Ernst G. (2001), Flow-calorimetric results for the massic heat capacity cp and the Joule-Thomson coefficient of CH4, of 0.85 CH4 + 0.15 C2H6, and of a mixture similar to natural gas, J. Chem. Thermodyn, 33, 601, ; Farzaneh-Gord M. (2010), Computing thermal properties of Natural gas by utilizing AGA8 Equation of State, Int. J. Chem. Eng. Appl, 1, 20. ; Farzaneh-Gord M. (2012), Numerical procedures for natural gas accurate thermodynamics properties calculation, Journal of Engineering Thermophysics, 20, 2. ; Guo X. (1997), Viscosity model based on equations of state for hydrocarbon liquids and gases, Fluid Phase Equilib, 139, 1-2, 405, ; Heidaryan E. (2010), New correlations to predict natural gas viscosity and compressibility factor, J. Pet. Sci. Eng, 73, 67, ; Heidaryan E. (2010), A novel correlation approach for prediction of natural gas compressibility factor, J. Nat. Gas Chem, 19, 189, ; Hwang C. (1997), Burnett and pycnometric (P, V<sub>m</sub>T) measurements for natural gas mixtures, J. Chem. Thermodyn, 29, 1455, ; Kumar N., 2004. <i>Compressibility factor for natural and sour reservoir gases by correlations and cubic equations of state</i>, MS thesis, Texas Tech University, Lubbock, Tex, USA, 14-15, 23. ; Londono F. (2002), Simplified correlations for hydrocarbon gas viscosity and gas density validation and correlation behavior using a large scale database, null, ; Marić I. (2005), The Joule-Thomson effect in natural gas flow-rate measurements, Flow Meas. Instrum, 16, 387, ; Marić I. (2007), A procedure for the calculation of the natural gas molar heat capacity, the isentropic exponent, and the Joule-Thomson coefficient, Flow Meas. Instrum, 18, 18, ; Marić I. (2005), Calculation of natural gas isentropic exponent, Flow Meas. Instrum, 16, 13, ; McElroy P. (1989), Compression-factor measurements on methane, carbon dioxide, and (methane+carbon dioxide) using a weighing method, J. Chem. Thermodyn, 21, 1287, ; Najim AM., 1995. <i>Evaluations of Correlations for Natural Gas Compressibility Factors</i>, MS thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, 6-9. ; Patil P. (2007), Accurate density measurements for a 91% methane natural gas-like mixture, J. Chem. Thermodyn, 39, 1157, ; Setzmann U. (1991), A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa, J. Phys. Chem. Ref. Data, 20, 1061, ; Staby A. (1991), Measurement of the volumetric properties of a nitrogen-methane-ethane mixture at 275, 310, and 345 K at pressures to 60 MPa, J. Chem. Eng. Data, 36, 09, ; Standing M. (1942), Density of natural gases, Trans. AIME, 146, 140, ; Yarborough L. (1974), How to Solve Equation of State for Z-factors?, Oil & Gas J, 86.