Starch gelatinisation in Couette-Taylor flow apparatus

Journal title

Chemical and Process Engineering




No 4 December



starch gelatinisation ; Couette-Taylor flow ; computer simulation

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences Committee of Chemical and Process Engineering




Artykuły / Articles


ISSN 0208-6425


Baks T. (2007), Comparison of methods to determine the degree of gelatinisation for both high and low starch concentrations, Carbohydr. Polym, 67, 481, ; Baks T. (2008), Towards an optimal process for gelatinisation and hydrolysis of highly concentrated starch-water mixtures with alpha-amylasefrom B. licheniformis, J. Cereal Sci, 47, 214, ; E. Baruque Filho (2000), Babassu coconut starch liquefaction: an industrial scale approach to improve conversion yield, Bioresource Technol, 75, 49, ; Beleia A. (2006), Modeling of starch gelatinization during cooking of cassava (Manihot esculenta Crantz), LWT-Food Sci. Technol, 39, 400, ; Birch G. (1973), Degree of Gelatinisation of Cooked Rice, Die Stark/Starch, 25, 98, ; Brandam C. (2003), A original kinetic model for the enzymatic hydrolysis of starch during mashing, Biochem. Eng. J, 13, 43, ; Coufort C. (2005), Flocculation related to local hydrodynamics in a Taylor-Couette reactor and in a jar, Chem. Eng. Sci, 60, 2179, ; Dluska E. (2010), Regimes of multiple emulsions of W1/O/W2 and O1/W/O2 type in the continuous Couette-Taylor flow contactor, Chem. Eng. Technol, 33, 113, ; Hubacz R. (2010), Starch gelatinization and hydrolysis in the apparatus with Couette-Taylor flow, Inż. Apar. Chem, 2, 55. ; R. van den Einde (2003), Understanding molecular weight reduction of starch during heating -shearing processes, J. Food Sci, 68, 2396, ; Jung W.-M. (2000), Particle morphology of calcium carbonate precipitated by gas-liquid reaction in a Couette-Taylor reactor, Chem. Eng. Sci, 55, 733, ; Jung W.-M. (2010), Precipitation of calcium carbonate particles by gas-liquid reaction: morphology and size distribution of particles in Couette-Taylor and stirred tank reactors, J. Cryst. Grow, 312, 3331, ; Kelder J. (2004), Power-law foods in continuous coiled steriliser, Biotechnol. Prog, 20, 921, ; Li J.-Y. (2001), Relationships between thermal, rheological characteristics and swelling power for various starch, J. Food Eng, 50, 141, ; Lipatova I. (2006), Mechanical degradation of gelatinised starch upon hydroacoustic treatment, Russian J. Appl. Chem, 79, 1532, ; Matsuka S. (2010), Gelatinization and Enzymatic Saccharification in a Taylor-Couette flow reactor, null. ; Mitrus M. (2010), Modyfikacja skrobi ziemniaczanej metodą ekstruzji, Acta Agrophysica, 16, 1, 101. ; Nelles E. (2000), Maize Starch Biphasic Pasting Curves, J. Cereal Sci, 31, 287, ; Saomoto K. (2010), Dispersion of floating particles in a Taylor vortex flow reactor, J. Chem. Eng. Jpn, 43, 319, ; Sakonidou E. (2003), Mass transfer limitations during starch gelatinization, Carbohydr. Polym, 53, 53, ; Wereley S. (1999), Velocity field for Taylor -Couette flow with an axial flow, Phys. Fluids, 11, 3637, ; Zhu X. (2010), Study of cell seeding on porous poly(D, L-lacticco-glycolic acid) sponge and growth in a Couette-Taylor bioreactor, Chem. Eng. Sci, 65, 2108,