Applied sciences

Archives of Acoustics

Content

Archives of Acoustics | 2020 | vol. 45 | No 1 |

Abstract

In this study, the effect of the emergence angle of a source array on acoustic transmission in a typical shallow sea is simulated and analyzed. The formula we derived for the received signal based on the Normal Mode indicates that the signal is determined by the beamform on the modes of all sources and the samplings of all modes at the receiving depth. Two characteristics of the optimal emergence angle (OEA) are obtained and explained utilizing the aforementioned derived formula. The observed distributions of transmission loss (TL) for different sources and receivers are consistent with the obtained characteristics. The results of this study are valuable for the development and design of active sonar detection.

Go to article

Abstract

The large variability of communication properties of underwater acoustic channels, and especially the strongly varying instantaneous conditions in shallow waters, is a challenge for the designers of underwater acoustic communication (UAC) systems. The use of phase modulated signals does not allow reliable data transmission through such a tough communication channel. However, orthogonal frequency-division multiplexing (OFDM), being a multi-carrier amplitude and phase modulation technique applied successfully in the latest standards of wireless communications, gives the chance of reliable communication with an acceptable error rate. This paper describes communication tests conducted with the use of a laboratory model of an OFDM data transmission system in a shallow water environment in Wdzydze Lake.

Go to article

Abstract

In this paper, the authors analyse the propagation of surface Love waves in an elastic layered waveguide (elastic guiding layer deposited on an elastic substrate) covered on its surface with a Newtonian liquid layer of finite thickness. By solving the equations of motion in the constituent regions (elastic substrate, elastic surface layer and Newtonian liquid) and imposing the appropriate boundary conditions, the authors established an analytical form of the complex dispersion equation for Love surface waves. Further, decomposition of the complex dispersion equation into its real and imaginary part, enabled for evaluation of the phase velocity and attenuation dispersion curves of the Love wave. Subsequently, the influence of the finite thickness of a Newtonian liquid on the dispersion curves was evaluated. Theoretical (numerical) analysis shows that when the thickness of the Newtonian liquid layer exceeds approximately four penetration depths 4δ of the wave in a Newtonian liquid, then this Newtonian liquid layer can be regarded as a semi-infinite half-space. The results obtained in this paper can be important in the design and optimization of ultrasonic Love wave sensors such as: biosensors, chemosensors and viscosity sensors. Love wave viscosity sensors can be used to assess the viscosity of various liquids, e.g. liquid polymers.

Go to article

Abstract

The risk of human exposure to finely-dispersed aerosol particles being airborne indoors is determined by the size and the number concentration of particles, the intensity of an aerosol emission source, the air filtration and ventilation efficiency, etc. The emphasis in this article is on behaviour patterns of aerosol particles when exposed to ultrasonic and electrostatic fields in different conditions of air temperature and relative humidity. Wood flour having sizes of interest (characteristic particle diameter about 10 μm) is chosen as a model aerosol. The article considers a physical and mathematical model presenting the evolution of aerosol particles in external fields, taking into account the moisture content and the temperature of a dispersive medium. The efficiency of ultrasonic and electrostatic precipitation in different relative humidity and temperature conditions in an enclosed space was studied using optical measurement methods of particle size and concentration.

Go to article

Abstract

Geometry of the fluid container plays a key role in the shape of acoustic streaming patterns. Inadvertent vortices can be troublesome in some cases, but if treated properly, the problem turns into a very useful parameter in acoustic tweezing or micromixing applications. In this paper, the effects of sinusoidal boundaries of a microchannel on acoustic streaming patterns are studied. The results show that while top and bottom sinusoidal walls are vertically actuated at the resonance frequency of basic hypothetical rectangular microchannel, some repetitive acoustic streaming patterns are recognised in classifiable cases. Such patterns can never be produced in the rectangular geometry with flat boundaries. Relations between geometrical parameters and emerging acoustic streaming patterns lead us to propose formulas in order to predict more cases. Such results and formulations were not trivial at a glance.

Go to article

Abstract

Noise reduction inside waveguide systems has gained momentum owing to a great interest in it. To attenuate the sound in a broad frequency range, this study aims to compare the effects of two acoustic liners, a perforated plate backed by an air cavity (PP-Air cavity), or by a porous material (PP-PM), on the acoustic behaviour of lined ducts using a numerical model to compute the multimodal scattering matrix. From this matrix, the reflection and the transmission coefficients are computed and therefore the acoustic power attenuation is deduced. Moreover, the effects of geometry of ducts with and without changes in the section are investigated. The numerical results are obtained for five configurations, including cases of narrowing and widening of a duct portion with sudden or progressive discontinuities. Accordingly, numerical coefficients of reflection and transmission as well as the acoustic power attenuation show the relative influence of acoustic liners in each type of configuration.

Go to article

Abstract

The theoretical estimation of sound absorption coefficient of a surface may give very different results. This will depend on the type of sound field assumed in the theoretical model used for the estimation of its sound absorption coefficient. Absorption coefficients for normal and diffuse sound fields are widely known, although they may be far from the absorption values given by an absorbing material when it is finally installed inside a room or enclosed space, where a sound field closer to a spherical wavefront is more likely to be found. This work presents a theoretical study, which is addressed at obtaining a mathematical expression to calculate the sound absorption coefficient for a variable range of incidence angles, called αs. The presented method uses a circular sound field incidence as an approximation to a spherical incidence. The estimation of this coefficient αs is based on obtaining the incident and reflected sound fields for a surface located facing a lineal source. The advantage of this calculation method over others lies on its capability to give results for circular, normal and random wave incidence depending on the range of incidence angles considered in the calculation.

Go to article

Abstract

Radiation of sound waves from a semi-infinite cylindrical duct with perforated end whose outer wall is coated with acoustically absorbent material is investigated by using the Wiener-Hopf technique in conjunction with the mode matching technique. A semi-infinite duct with a perforated screen can be used as a model for many engineering applications, such as noise reduction in exhausts of automobile engines, in modern aircraft jet, and turbofan engines. In particular, we aim to find the effects of outer lining and perforated end to sound pressure level for the underlying problem by using the standard Wiener-Hopf and mode matching techniques. We also present some numerical illustrations by determining the sound pressure level for different parameters such as soft and rigid outer surface, with and without perforated end, etc. Such investigations are useful in the reduction of noise effects generated through variety of sources.

Go to article

Abstract

An efficiency of the nonsingular meshless method (MLM) was analyzed in an acoustic indoor problem. The solution was assumed in the form of the series of radial bases functions (RBFs). Three representative kinds of RBF were chosen: the Hardy’s multiquadratic, inverse multiquadratic, Duchon’s functions. The room acoustic field with uniform, impedance walls was considered. To achieve the goal, relationships among physical parameters of the problem and parameters of the approximate solution were first found. Physical parameters constitute the sound absorption coefficient of the boundary and the frequency of acoustic vibrations. In turn, parameters of the solution are the kind of RBFs, the number of elements in the series of the solution and the number and distribution of influence points. Next, it was shown that the approximate acoustic field can be calculated using MLM with a priori error assumed. All approximate results, averaged over representative rectangular section of the room, were calculated and then compared to the corresponding accurate results. This way, it was proved that the MLM, based on RBFs, is efficient method in description of acoustic boundary problems with impedance boundary conditions and in all acoustic frequencies.

Go to article

Abstract

The aim of the research was to determine the occurrence of possible, significant levels of infrasound and low frequency noise both in classrooms and around the primary school. Two sources of noise during research were significant: traffic on the national road and a wind farm, located near the school building. So far, few studies have been published regarding the impact of low-frequency, environmental noise from communication routes. The identification of hazards in a form of estimated noise levels resulted in preliminary information whether the location of the school near the road with significant traffic and the nearby wind farm can cause nuisance to children. There have been determined the criteria for assessing infrasound and low frequency noise. There have been made third octave band analyses of noise spectrum and the essential noise indicators were calculated. The results of learning in that school were thoroughly analysed for a long period of time and they were compared to the results obtained in other schools within a radius of 200 km situated near similar noise sources. Chosen assessment criteria show small exposure to low frequency noise. Measured infrasound noise levels are below hearing threshold.

Go to article

Abstract

Acoustic barriers which are positioned along traffic lanes are designed to protect the surroundings from excessive noise. Such structures are to reverberate, diffract and damp the propagating acoustic waves. However, this method of shielding has some disadvantages which include constraint visibility and structure-born noise. The interaction between traffic-caused movement of air mass and acoustic barriers may generate infra noise waves. That is undesirable and should be estimated. The authors undertook the research to diagnose the plausible side effect of structure-born noise of such barriers because it may influence human body (Kasprzak, 2014). As a mechanical structure, the acoustic barrier is characterized by mechanical parameters which, in the field of modal analysis, are made up of natural frequencies, damping factors and mode shapes. In this paper the authors investigated the acoustic pressure distribution in the neighborhood of a real acoustic barrier in the scope of infra noise propagation. The methods of modal analysis were used to identify natural frequencies of the barrier and dominating frequencies of propagating waves in the far field. The correlation between observed vibration and acoustic signals is presented.

Go to article

Abstract

The paper presents results of the localization of main noise sources in the industrial plant. Identification of main noise sources was made with an acoustic camera using Beamforming Method. Parallel to the measurements by means of the acoustic camera, sound level measurements on the main noise sources have been performed. Based on the calculations, prediction regarding the noise emission at residential buildings located near to the plant has been determined. Acoustic noise maps have been performed with LEQ Professional software, which includes the 3D geometry of the buildings inside the plant. It has been established that, after introduction of noise reduction measures in the plant, the noise levels at the observation points in the residential area meets the limit values.

Go to article

Abstract

Nowadays, noise generated by devices is a serious issue in industry and in everyday life, because it may cause health damage to humans. In this research, a cubic rigid device casing built of double-panel thin steel walls is employed to reduce noise emitted from an enclosed noise source. Double-panel structure is used because of good sound insulation it provides. There exist three main groups of noise reduction methods, i.e. passive, semi-active and active. In this paper, a semi-active modification of double-panel structure is applied and examined. The bistable actuator (solenoid) mounted between incident and radiating plates changes its state due to applied constant voltage, causing the coupling of plates. Experimentally measured natural frequencies and modeshapes of the structure are compared to the simulation results. The influence of proposed modification on dynamical properties of the structure is analyzed and discussed.

Go to article

Abstract

Today’s human-computer interaction systems have a broad variety of applications in which automatic human emotion recognition is of great interest. Literature contains many different, more or less successful forms of these systems. This work emerged as an attempt to clarify which speech features are the most informative, which classification structure is the most convenient for this type of tasks, and the degree to which the results are influenced by database size, quality and cultural characteristic of a language. The research is presented as the case study on Slavic languages.

Go to article

Abstract

Acoustical analysis of snoring provides a new approach for the diagnosis of obstructive sleep apnea hypopnea syndrome (OSAHS). A classification method is presented based on respiratory disorder events to predict the apnea-hypopnea index (AHI) of OSAHS patients. The acoustical features of snoring were extracted from a full night’s recording of 6 OSAHS patients, and regular snoring sounds and snoring sounds related to respiratory disorder events were classified using a support vector machine (SVM) method. The mean recognition rate for simple snoring sounds and snoring sounds related to respiratory disorder events is more than 91.14% by using the grid search, a genetic algorithm and particle swarm optimization methods. The predicted AHI from the present study has a high correlation with the AHI from polysomnography and the correlation coefficient is 0.976. These results demonstrate that the proposed method can classify the snoring sounds of OSAHS patients and can be used to provide guidance for diagnosis of OSAHS.

Go to article

Abstract

Large venues and auditoriums are commonly associated with their astounding architecture. Their acoustic quality is an essential factor in its qualification as a great and functional, or a badly designed place. However, acoustics is often overlooked during the design stage of a building due to the complexity and high cost of the measurements involved. For this reason, it is important to explore more accessible ways to implement acoustics evaluations. The aim of this work is to compare typical experimental measuring methods and the use of mobile devices to assess the acoustic quality of a room. These measurements are contrasted with the software simulation of the same acoustical space. The results show that the mobile system can be used for professional measurements with low restrictions in the frequency range of interest of this study (90 Hz to 4000 Hz).

Go to article

Abstract

The specific working conditions of the wind turbine in strong wind cause a number of problems in the measurement of noise indicators used in its short and long-term assessment. The wind is a natural working environment of the turbine, but it also affects the measurement system, moreover, it can be a secondary source of other sounds that interfere with the measurement. One of the effective methods of eliminating the direct impact of wind on the measurement system is placing the microphone on the measurement board at ground level. However, the obtained result can not be directly compared with the admissible values, as it has to be converted to a result at a height of 4 m. The results of previous studies show that this relation depends, inter alia, on the speed and direction of the wind. The paper contains the results of measurements on the measurement board, according to EN 61400-11:2013, and at a height of 4 m above ground made simultaneously in three points around the 2 MW turbine at various instantaneous speeds and changing wind directions. Analysis of the impact of measuring point location on the measurement result of noise indicators and the occurrence of additional features affecting the relationship between the values measured on the board and at the height of 4 m, and especially the tonality, amplitude modulation and content of low frequency content, was m

Go to article

Editorial office

Editorial Board
Editor-in-Chief
Andrzej Nowicki (Institute of Fundamental Technological Research PAN, Warszawa)
Deputy Editor-in-Chief
Barbara Gambin (Institute of Fundamental Technological Research PAN, Warszawa)
Associate Editors
Genaral linear acoustics and physical acoustics
• Wojciech P. Rdzanek (University of Rzeszów, Rzeszów)
• Anna Snakowska (AGH University of Science and Technology, Kraków)
Architectural acoustics
• Tadeusz Kamisiński (AGH University of Science and Technology, Kraków)
Musical acoustics and psychological acoustics
• Andrzej Miśkiewicz (The Fryderyk Chopin University of Music, Warszawa)
• Anna Preis (Adam Mickiewicz University, Poznań)
Underwater acoustics and nonlinear acoustics
• Grażyna Grelowska (Gdańsk University of Technology, Gdańsk)
Speech, Computational acoustics and signal processing
• Ryszard Gubrynowicz (Polish-Japanese Institute of Information Technology, Warszawa)
Ultrasonics, transducers and instrumentation
• Krzysztof Opieliński (Wrocław University of Technology, Wrocław)
Electroacoustics
• Jan Żera (Warsaw University of Technology, Warszawa)
Noise control and environmental acoustics
• Jan Adamczyk (AGH University of Science and Technology, Kraków)
• Mirosław Meissner (Institute of Fundamental Technological Research PAN, Warszawa)
• Janusz Kompała (Central Mining Institute, Katowice)
Secretary
• Izabela Ewa Mika

Contact

Archives of Acoustics
Institute of Fundamental Technological Research
5b Pawińskiego Str.,
02-106 Warszawa, Poland
Phone: (48) (22) 826 12 81 ext. 206
Fax: (48) (22) 826 98 15
Email: akustyka@ippt.gov.pl

Support Contact
Paweł Witkowski
Email: intools@intools.pl

Instructions for authors

Author Guidelines
• Manuscripts intended for publication in Archives of Acoustics should be submitted in pdf format by an on-line procedure.
• Manuscript should be original, and should not be submitted either previously or simultaneously elsewhere, neither in whole, nor in part.
• Submitted papers must be written in good English and proofread by a native speaker.
• Basically, the papers should not exceed 40 000 typographic signs.
• Postal addresses, affiliations and email addresses for each author are required.
• Detailed information see Article Requirements.
• Manuscript should be accompanied by a cover letter containing the information:
o why the paper is submitted to ARCHIVES OF ACOUSTICS,
o suggestion on the field of acoustics related to the topic of the submitted paper,
o the statement that the manuscript is original, the submission has not been previously published, nor was sent to another journal for consideration,
o 3–5 names of suggested reviewers together with their affiliations, full postal and e-mail addresses; at least 3 suggested reviewers should be affiliated with other scientific institutions than the affiliations of the authors,
o author’s suggestion to classification of the paper as the research paper, review paper or technical note.

Article Requirements
1. At submission time only a PDF file is required. After acceptance, authors must submit all source material (see information about Figures). Authors can use their preferred manuscript-preparation software. The journal itself is produced in LaTeX, so accepted articles will be converted to LaTeX at production time.
2. The title of the paper should be as short as possible.
3. Full names and surnames should be given.
4. The full postal address of each affiliation, including the country name should be provided. Affiliations should contain the full postal address, as well as an e-mail address of one author designated as corresponding author.
5. The text should be preceded by a concise abstract (less than 200 words).
6. Keywords should be given.
7. The formulae to be numbered are those referred to in the paper, as well as the final formulae.
8. All notations should be written very distinctly.
9. References in the text (author(s) and year of publication) are to be cited between parentheses.
Items appearing in the reference list should be complete, including surname and the initials of the first name of the author, the full title of the paper/book in English followed by the information on the original paper language. In case of a book, the publisher's name, the place and year of publication should be given. In case of a periodical, the full title of the periodical, consecutive volume number, current issue number, pages, and year of publication should be given. All references in the bibliography should be cited in the text, and arranged in alphabetical order by authors' last name.
For more information on references see http://acoustics.ippt.gov.pl/public/Instructions.pdf.
10. Figures must be of publication quality. Each figure should be saved in separate file and captioned and numbered so that it can float. After acceptance, Authors will need to submit the original source files for all photos, diagrams and graphs in manuscript.
For diagrams and graphs vector EPS or vector PDF files are the most useful. Make sure that what you're saving is vector graphics and not a bitmap. Please also include the original data for any plots. This is particularly important if you are unable to save Excel-generated plots in vector format. Saving them as bitmaps is not useful; please send the Excel (.xls) spreadsheets instead.
Photographs should be high-quality – with resolution no lower than 300 dpi.
Pack all figure files into a single archive (zip, tar, rar or other format) and then upload on the magazine web site.

This page uses 'cookies'. Learn more